----追光逐电 光赢未来----
import torch
import torchvision.transforms as transforms
from PIL import Image
# Load a pre-trained YOLO model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
# Function to perform object detection
def detect_objects(image_path):
# Load and transform the image
image = Image.open(image_path)
transform = transforms.Compose([
transforms.ToTensor(),
])
image = transform(image).unsqueeze(0) # Add batch dimension
# Perform inference
model.eval() # Set the model to evaluation mode
with torch.no_grad():
predictions = model(image)
# Process predictions
# Note: The output format can vary, so adjust the processing as needed
for pred in predictions[0]:
bbox = pred[:4] # Bounding box coordinates
score = pred[4] # Confidence score
class_id = pred[5] # Class ID
print(f'Class: {class_id}, Score: {score}, BBox: {bbox}')
# Example usage
detect_objects('path/to/your/image.jpg')
import torch
import torch.optim as optim
# Assuming yolo_model is your YOLO model and train_loader is your data loader
# Define the optimizer
optimizer = optim.Adam(yolo_model.parameters(), lr=0.001)
# Placeholder for the YOLO loss function
# Note: You'll need to define this based on the specific YOLO version and its output format
def yolo_loss(predictions, targets):
# Compute localization loss, confidence loss, and classification loss
# localization_loss = ...
# confidence_loss = ...
# classification_loss = ...
# Combine the losses
total_loss = localization_loss + confidence_loss + classification_loss
return total_loss
# Training loop
for epoch in range(num_epochs):
for images, targets in train_loader: # Assuming targets contain ground truth
optimizer.zero_grad() # Zero the gradients
# Forward pass
predictions = yolo_model(images)
# Compute loss
loss = yolo_loss(predictions, targets)
# Backward pass and optimize
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}')
import cv2
import torch
# Load the pre-trained YOLO model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
# Initialize the video stream (replace '0' with a video file path for processing a video file)
cap = cv2.VideoCapture(0)
while True:
# Read frames from the video stream
ret, frame = cap.read()
if not ret:
break
# Convert the frame to the format expected by the model
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = model([frame_rgb], size=640) # Adjust size as needed
# Render the detections on the frame
frame_with_detections = results.render()[0]
# Convert the frame back to BGR for displaying with OpenCV
frame_with_detections_bgr = cv2.cvtColor(frame_with_detections, cv2.COLOR_RGB2BGR)
# Display the frame with detections
cv2.imshow('YOLO Object Detection', frame_with_detections_bgr)
# Break the loop when 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release the video stream and close windows
cap.release()
cv2.destroyAllWindows()
来源:新机器视觉
申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。
----与智者为伍 为创新赋能----
联系邮箱:uestcwxd@126.com
QQ:493826566