特斯拉电动汽车热管理技术发展趋势

智能汽车设计 2024-03-31 10:40

特斯拉专注于电动汽车的研发要早于大多数传统汽车企业,经过多年的沉淀与积累,现已成为电动汽车行业的领头羊。伴随着产品序列的不断丰富,与其对应的电动汽车热管理系统技术也在进行不断的更新与完善,充分体现了功能精细化和结构集成化的特点。基于特斯拉热管理系统相关专利,对其热管理系统技术发展趋势进行分析,为电动汽车热管理系统设计提供参考。

1 前言

随着汽车的电动化和智能化发展,电动汽车热管理系统也向着集成化、可控化和精准化方向发展,热管理系统设计结构越来越复杂,对控制精度要求也越来越高。对于电动汽车而言,热管理系统不仅影响乘用车驾乘舒适性,而且也牵涉安全性和能耗问题。如何实现电动汽车实际环境下续驶里程和舒适性之间的平衡,是电动汽车热管理系统设计需要解决的问题[1-2]

特斯拉作为汽车行业的后起之秀,其专注于电动汽车的研发要早于大多数传统汽车企业,经过多年的沉淀与积累,现已成为电动汽车行业的领头羊。伴随着Tesla 产品序列的不断丰富,与其对应的电动汽车热管理系统技术也在进行不断的更新与完善。本文基于特斯拉相关专利对其采用的热管理系统技术进行总结,为电动汽车热管理系统开发提供参考。

2 特斯拉热管理系统技术概述

特斯拉从2008 年第1款电动汽车Tesla Roadster上市,至今已经生产了5款电动汽车。按照时间序列和匹配车型,可把特斯拉电动汽车热管理系统技术可分为4代。以Tesla Roadster 为代表,采用最早一代特斯拉热管理系统,结构相对简单,沿用传统汽车热管理系统思路,各个热管理回路相对独立。以Tesla Model S/X 为代表,采用特斯拉第2 代热管理系统,引入四通换向阀,实现电机回路与电池回路的串并连切换,在行业内属于首创。以Tesla Model 3 为代表,采用特斯拉第3代热管理系统,通过引入电机堵转加热,取消电池回路高压正温度系数热敏电阻(Positive Temperature Coefficient,PTC)降低成本;乘员舱采暖仍然采用高压风暖PTC,但通过从设计结构上进行改进,克服风暖PTC无法实现乘员舱温度分区控制的短板;同时结构上采用集成式储液罐,简化热管理系统结构布置,降低后期维护成本的目的。以Tesla Model Y为代表,采用特斯拉最新一代热管理系统技术,在特斯拉产品序列中首次采用热泵空调系统,与特斯拉提出的电机低效制热模式技术相结合,可应用于极端环境下乘员舱加热,同时取消乘员舱高压风暖PTC配置节约成本;在结构上采用高度集成的八通阀模块,对系统多个热管理系统部件进行集成,同时实现不同热管理系统工作模式的灵活切换。

特斯拉对电动汽车热管理技术进行不断的创新,从技术上和结构上提出了新的想法,引领行业发展,为电动汽车热管理系统技术的发展提供了新的思路。

3 特斯拉热管理系统技术详解

3.1 特斯拉第1代热管理系统

特斯拉第1 代热管理系统应用于Tesla Roadster车型,其热管理系统拓扑结构如图1所示,包含电机回路、电池回路、空调暖通(Heating Ventilation and Air Conditioning,HVAC)回路和空调回路,各回路功能相对独立,不同回路之间的耦合度相对较小。

图1 特斯拉第1代热管理系统拓扑结构[3]

电机回路上布置有驱动电机、电子控制单元、电子水泵、膨胀水箱、电机散热器和冷却风扇。其主要作用是对电机回路上各电子部件进行散热,保证各电子部件工作在合理的温度范围。

电池回路上布置有动力电池、热交换器、膨胀水箱、高压PTC和电子水泵。其主要作用是对动力电池进行温度调节控制,在低温环境下,对动力电池进行加热,改善动力电池的低温性能;在高温环境下,通过与空调系统交互的热交换器,对动力电池进行冷却,保证动力电池的性能和使用寿命。

HVAC 回路上布置有散热器、高压PTC、鼓风机、热交换器和电子水泵。其主要作用是对乘员舱温度进行调节,在低温环境下,通过高压风暖PTC 对鼓风机吸入的低温空气进行加热,为乘员舱进行采暖;在高温环境下,通过与空调系统交互的热交换器,对HVAC 回路进行冷却,经散热器对鼓风机吸入的高温空气进行冷却,为成员舱进行制冷。

空调系统采用传统单蒸发器空调,回路上布置有压缩机、冷凝器、膨胀阀、热交换器和干燥瓶。由压缩机驱动冷媒工质进行制冷循环,通过热交换器对电池系统回路和HVAC系统回路进行制冷。

另外,电机回路和HVAC 回路上布置有3 个控制阀,可实现电机回路余热为HVAC 回路加热的目的,在低温环境下,成员舱有制冷需求,通过HVAC 回路的散热器对鼓风机吸入的低温空气进行预加热,节约高压PTC消耗的电能。

3.2 特斯拉第2代热管理系统

Tesla Model S/X 车型采用特斯拉第2 代热管理系统,相对于第1代热管理系统,集成度更高,首次引入四通阀控制结构,可实现电机回路与电池回路的串并联模式。另外,空调系统采用双蒸发器结构。其热管理系统拓扑结构如图2所示。

图2 特斯拉第2代热管理系统拓扑结构[4]

空调系统仍然采用传统空调,相对第1代系统,引入了成员舱内蒸发器和冷媒-水热交换器(Chiller),分别实现成员舱和电池回路的制冷。当成员舱有制冷需求时,通过空调冷媒在室内蒸发器内的相变吸热过程对乘员舱进行制冷,这种方式在第1代空调的基础上,取消了HVAC 冷却回路,实现空调系统对乘员舱的直接制冷过程,制冷效果更好。空调系统与电池回路通过Chiller热交换器进行换热,可对空调制冷量进行精确分配,减小电池回路的主动冷却过程对乘员舱制冷舒适性的影响。当乘员舱有采暖需求时,采用高压风暖PTC进行乘员舱进气加热。

电机回路相较于第1 代系统,增加了与电池回路相耦合的四通阀结构,另外对冷却部件有所调整,增加了车载充电机的冷却。在结构上,仍然采用外置低温散热器对回路进行冷却,但在此基础上,新增三通阀结构,可实现对外置低温散热器的短接,在不需要散热的情况下,较好的避免了多余热量的散失,为电机余热回收利用提供基础。

由于电池回路和电机回路采用同样的冷却工质,通过引入四通阀控制,可实现电池回路和电机回路的灵活交互。在整车冷启动工况下,当电池系统有加热需求,可调节四通阀的开启状态,实现电机回路和电池回路串联,使用电机系统的余热为电池系统进行加热,减少高压PTC为电池加热所消耗的电能。在环境温度低于一定值,同时电池有冷却需求,电机回路温度低于电池回路,可调节四通阀的开启状态,实现电机回路和电池回路串联,通过电机回路的散热器为电池系统进行冷却,节约空调系统为电池冷却所需要的能量消耗。

当整车运行工况、电池系统和电机系统的工作状态,不满足两热管理回路串联模式的情况下,则控制四通阀开启状态,实现两回路并联。对电机回路和电池回路的热管理需求进行独立控制。

特别指出,在最终量产车型上,实际热管理系统布置结构可能根据实际情况会有所调整,比如Tesla Model S采用双冷凝器布置结构,而Tesla Model X采用单冷凝器布置结构。但其与图2所示的热管理拓扑结构没有本质的区别,在此不再单独叙述。

3.3 特斯拉第3代热管理系统

以Tesla Model 3为代表的车型采用特斯拉第3代热管理系统。相对于第2代热管理拓扑结构,没有本质上的差别,更多的是增加了一些新的技术应用,同时结构设计上更凸显集成化。在风暖PTC、驱动电机和储液罐结构设计上均有较大的技术创新,下面将分别进行介绍。

3.3.1 风暖PTC新技术

空调系统仍采用传统空调系统,主要用于乘员舱制冷和动力电池回路的主动冷却过程。乘员舱采暖仍然采用高压风暖PTC 结构,但相对于第2 代热管理系统,从风暖PTC 的结构设计端进行了改进,克服风暖PTC无法实现分区控制的缺点。

特斯拉空调箱系统采用风暖PTC 进行乘员舱加热,PTC 采用正温度因子材料随长度变化的加热管。可实现驾驶座与副驾驶座的分区加热控制,风暖PTC加热体横跨驾驶侧风道与副驾驶侧风道,如图3所示。

图3 风暖PTC加热器分区示意[5]

风暖PTC加热器由多个加热芯组成,每个加热芯沿长度方向可分为8个单元,可对每个单元采用的正温度系数电阻材料用量进行设定,如图4所示。正温度系数电阻材料用量不同,在接通电流后,会产生不同的热量和表面温度,因而可实现2侧气体流道内的不同吹风温度。通过选择性的对1个或多个加热芯进行IGBT 开关控制,最终实现驾驶侧和副驾驶侧的分区温度控制。

图4 具有非对称正温度因子的PTC加热芯示意[5]

目前风暖PTC 大多无法实现分区控制。特斯拉对热管理部件层面进行研究,在其他厂家普遍采用水暖PTC实现空调分区控制的情况下,特斯拉仍坚持采用风暖PTC 技术路线,从部件的设计入手,在保留风暖PTC升温响应快的优点基础上,解决风暖PTC的短板,拓宽风暖PTC的使用场景。

3.3.2 驱动电机新技术

驱动电机采用油冷电机,与电机回路通过热交换器实现热量传递,同时电机新增低效制热模式,通过电机控制器新的控制方式,可实现电机发热模式,通过四通阀控制,实现与电池回路的串联,采用电机低效制热模式用于电池回路的加热,相应的取消电池回路的高压PTC,减少成本。采用电机低效制热模式对电池回路进行加热的运行如图5所示。

图5 电机低效制热模式加热电池回路示意[6]

在极端冷启动工况下,电池有快速加热需求,在电机与电池回路串联的情况下,电机正常余热无法满足电池升温速率需求,则驱动电机进入低效制热模式。通过电机控制器调节电机定子线圈旋转磁场与转子永磁体的相位角,实现不同的电机效率。驱动电机进入电机低效制热模式,对电机定子线圈进行驱动生成热量,同时保证电机转子旋转或静止。

结合特别设计的电机润滑油流道,实现电机低效制热模式下的驱动电机热量转移,通过热交换器,把电机低效制热模式下生成的热量转移到电池回路,用于电池系统加热。电机低效制热模式可实现远大于电机普通驱动模式下的生热,因而可取消电池回路的高压PTC,节省系统成本。电机低效制热模式下的润滑油和热流量流动如图6所示。

图6 电机低效制热模式润滑油和热流量示意[6]

3.3.3 集成式储液罐技术

传统热管理系统包含大量的热管理部件和管路,同时采用众多的软管和接头进行连接,增加了整个热管理系统运行过程中的失效风险点。另外,由于各部件安装位置不同,在整车装配过程中需要消耗大量的时间和人工成本。

特斯拉采用集成式储液罐设计,实现膨胀水箱与热管理系统的加热与冷却部件高度集成,如图7 所示。该集成模块可以包含四通阀、电机水泵、电池水泵、Chiller 热交换器、散热器和执行器等部件,通过结构改进,减少不必要的热管理系统管路和接头连接数量,简化热管理系统在整车上的装配工作量,节省整车装配时间和后期维护成本。

图7 集成式储液罐结构示意[7]

3.4 特斯拉第4代热管理系统

特斯拉第4代热管理系统应用于特斯拉最新车型Tesla Model Y,其热管理系统拓扑结构如图8 所示。包含空调系统回路、电机系统回路和电池系统回路。

图8 特斯拉第4代热管理系统拓扑结构[8]

相对于特斯拉以往热管理系统,在Tesla Model Y车型上,特斯拉首次引入热泵空调系统。该空调系统主要是负责乘员舱的采暖和制冷功能。在结构上,该空调系统没有单独设置外置冷凝器,通过热交换器和管路连接,与电池回路和电机回路进行耦合,实现整个热管理系统的热量交互。

在使用驱动电机运行低效制热模式为电池系统加热的基础上,新增空调系统压缩机和鼓风机电机的低效制热模式。在极端低温启动情况下,控制空调压缩机和鼓风机的电机进入低效制热模式,作为电加热器使用,空调压缩机的电机可生成8 kW左右的热量,而鼓风机电机可产生400 W的热量,在取消乘员舱高压PTC,替换为2个低压PTC的情况下,能够保证热泵系统在-30 ℃环境下可靠稳定运行。同时改善热泵工作噪声,实现良好的NVH性能。

由于该热泵系统与电池回路通过热交换器实现耦合,而动力电池又具有质量大热容高的特点,动力电池也作为该热泵系统的1个热量存储装置,根据整车实际运行工况,判定是否为动力电池加热或从动力电池吸热。

Tesla Model Y 热泵空调系统采用了功能强大的整车热管理预调节工作模式,可通过Tesla Mobile App、车载循环日程App和自适应推断程序进行控制,后面这一种可识别用户上班时间,同时推断出典型的驾车出发时间。

在结构上,特斯拉对Tesla Model Y 的热管理系统进一步集成化,采用了集成歧管模块[9]和集成阀门模块。集成歧管模块把复杂的热管理系统管路进行集成,可有效的与集成阀门模块实现配合安装,集成阀门模块为八通阀结构,可看作是2 个四通阀的集成。如图8中虚线框中所示。

3.5 特斯拉热管理系统技术发展时序

按照时间顺序对特斯拉电动汽车热管理系统技术进行汇总,如图9所示。

图9 特斯拉电动汽车热管理系统技术发展时序

可以看出,随着上市车型的换代,特斯拉热管理系统技术也在不断的更新。伴随着热管理系统新技术的应用,在结构集成上,特斯拉也进行了不断的创新,不仅考虑热管理系统功能的实现,而且对整车装配以及后期维护便利性都作了统筹。

特斯拉这种从事物本身需求出发,即第一性原理(First Principle),开拓思维勇于创新、不断探索新的问题解决方法,值得我们技术从业者进行学习。

4 结论

(1)特斯拉第1代热管理系统设计相对简单,各回路相对独立,乘员舱空调系统采用间接制冷方式,采用阀门控制可实现电机回路余热对乘员舱加热。

(2)特斯拉第2 代热管理系统较第1 代热管理系统实现拓扑结构的升级,各热管理回路之间实现一定程度的交互,尤其新引入四通阀结构,可实现电池回路和电机回路的串并联,空调系统采用传统空调,乘员舱采用蒸发器直接制冷。

(3)特斯拉第3代热管理系统较第2代热管理系统在拓扑结构上没有大的变化,但在热管理系统部件上引入了大量的新技术应用,在热管理系统功能上,注重热管理系统能耗的优化,体现了精细化设计思路。

(4)特斯拉第4 代热管理系统作为特斯拉最新一代热管理系统,实现了全新升级。首次引入了热泵空调系统,同时也对热管理系统拓扑结构进行了较大的改变,可实现较多的热管理系统功能,控制较为复杂。考虑到整车装配和后期维护的便利性,对热管理系统部件进行了高度集成,实现了结构集成化的目的。

参考文献

[1]Wawzyniak M,Art L,Jung M,et al.Thermal Management as a Basic Prerequisite for Electric Mobility[J].ATZ Worldwide,2017,119(9):46-51.

[2]Wawzyniak, M.& Wiebelt, A.Thermal Management for Electrified Vehicles[J].MTZ Worldwide,2016(77):38-43.

[3]Tesla Motors,Inc.Electric vehicle thermal management system:US 2010/0025006 A1[P].2010-02-04[2020-09-01].

[4]Tesla Motors, Inc.Thermal management system with dual mode coolant loops: US 8402776 B2[P].2013-03-26[2020-09-01].

[5]Tesla Motors, Inc.HVAC system with positive temperature coefficient varying along length of heat rod: US 2018/0105018 A1[P].2018-04-19[2020-09-01].

[6]Tesla Motors, Inc.Electric motor waste heat mode to heat battery: US 2018/0083509 A1[P].2018-03-22[2020-09-01].

[7]Tesla Motors, Inc.Heating and cooling reservoir for a battery powered vehicle:US 2017/0373359 A1[P].2017-12-28[2020-09-01].

[8]Tesla Motors, Inc.Optimal source electric vehicle heat pump with extreme temperature heating capability and efficient thermal preconditioning: US 2019/0070924 A1[P].2019-03-07[2020-09-01].

[9]Tesla Motors, Inc.Technologies for manifolds: US 2019/0039440 A1[P].2019-02-07[2020-09-01].

END

智能汽车设计 关注智能汽车发展,分享智能汽车知识!
评论
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 97浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 104浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 180浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 322浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 516浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 465浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 442浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 477浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 487浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 495浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 61浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 454浏览
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 49浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦