两种电流检测电路设计方案

硬件笔记本 2024-03-30 08:27

点击上方名片关注了解更多


在研发设计电路项目时,依据需要实现的功能指标,进行详细的电路方案开发与验证;面对项目的功能电路研发,工程师一般采用的做法是化整为零,化繁为简,也就是将项目的需要实现的整体功能逐一分解拆散,拆散成众多的小功能。例如
  • 电磁炉项目,工程师可以将其拆散成按键检测功能、数码管显示功能、线圈加热功能、AC-DC功能、线圈驱动功能、风扇散热功能等等;
  • 智能马桶盖项目,工程师可以将其拆散成DC-DC功能、座圈加热功能、位置调节功能、水压调节功能、LCD显示功能、蓝牙功能等等;
  • 电动晾衣架项目,工程师可以将其拆散成红外遥控功能、电机驱动功能、LED驱动功能、LDO电源功能、声音提示功能、过载保护功能等等;
在将项目的整体功能拆散成众多的小功能后,工程师就可以根据每一个小功能,开发出对应的电路解决方案,形成
电路设计方案A,解决了小功能A的研发需求;
电路设计方案B,解决了小功能B的研发需求;
电路设计方案C,解决了小功能C的研发需求;
以此类推......
项目需求分解拆散图
最后将这些电路设计方案A、电路设计方案B、电路设计方案C等等通过一定的逻辑关系组合,构成完整的项目方案原理设计。
无论项目方案如何设计,工程师都了解,在电路方案设计中,存在一个重要的参数,也就是电流参数;
除了电流参数,电路中还存在另外三个重要的参数,电压参数、功率参数与时间频率参数。
衡量电路的一些工作状态,就可以通过电流参数的检测获得。比如
  • 三极管的放大倍数,工程师可以通过检测三极管的基级电流与集电极电流获得;
  • LED灯的亮度,工程师可以通过检测流过LED灯的电流获得;
  • 加热电阻丝的温度,工程师可以通过检测加热电阻丝的电流获得;
换言之,项目的工作状态判断,工程师可以利用检测项目中的电流参数等这些数据分析得出。如何检测这些电路中的电流参数,就成为工程师必须要解决的问题了。
怎么检测项目电路中的电流参数呢?这需要从项目的原始电路方案设计过程中去寻找。
既然项目的设计需求可以被分解拆散成众多的小功能A、小功能B、小功能C等等,工程师就能据此确定被检测的电流参数是在哪一个小功能电路中,举例说明
项目系统电流分配图
检测电机的工作电流,工程师需要确定项目中的电机是处于小功能A中的Ia,还是小功能B中的Ib,亦或是小功能C中的Ic,还是系统电源中的电流I。
不同电路的电流检测,其设计方案也不相同,电路中的电流大致可以细分为两个类别
类别一:小功能A的电流Ia,小功能B的电流Ib,小功能C的电流Ic
类别二:项目系统电源的电流I
电流Ia、Ib与Ic之所以能归纳成一个相同的类别,主要是因为电流Ia、Ib与Ic在电路结构中,是处于独立分支的工作状态,电流Ia、电流Ib与电流Ic的检测互不影响互不干涉,也就是工程师在检测电流Ia的时候,不需要检测电流Ib或者电流Ic;检测电流Ib的时候,不需要检测电流Ia或者Ic;检测电流Ic的时候,不需要检测电流Ia或者电流Ic。
与之相反,项目系统电源的电流I,其检测的电路方案设计则需要兼顾电流Ia、电流Ib与电流Ic。为什么会出现这种特殊现象呢?为什么检测系统电源的电流I还需要兼顾小功能电路中的电流Ia、电流Ib与电流Ic呢?工程师是时候回顾一下电路中的基尔霍夫定律了,它会告诉答案
系统电源电流I = 电流Ia + 电流Ib + 电流Ic
针对电路中这两个类别的电流,工程师该如何去检测呢?如何设计电流检测功能的电路方案呢?同样地,电路中的电流被分为两个类别,与之对应的检测方案,也分为两个
方案一:电阻电压ADC采集方案
方案二:电阻电压运算放大方案

电阻电压ADC采集方案

电流,经过电阻,在其两端会产生一个压降差----欧姆定律
通过检测电路中的电阻R两端的电压U,依据电阻的电路特性,电流I = 电压U / 电阻R,工程师就可以间接检测出电路中的电流。
电阻电压ADC采集方案图
在电阻电压ADC采集方案图中,由于电路的串联关系,流入电阻R的电流是等于Ia,也就是被检测的电流参数。
当被检测电流Ia流入电阻R,电阻R两端产生一个压降差Ur,由于电阻R的右端直接连接到GND地线(0V),电阻R的左端连接ADC采集端,因此ADC采集的电压也就为电阻R两端的电压Ur。电压Ur通过ADC采集分析处理后,工程师便可以精确地得知检测的电流Ia,Ia = Ur / R。
这就是电阻电压ADC采集方案,电流Ib与电流Ic的检测方案与电流Ia原理类似。
电阻电压ADC采集方案,虽然能实现工程师检测电路中的电流,但也存在一些优缺点
(1)电阻电压ADC采集方案优点
工程师在进行项目电路设计的时候,首选的是电路简洁、稳定可靠、成本低廉、较容易实现的方案。电阻电压ADC采集方案,工程师仅仅通过在电路中串联一个电阻R,不需要经过复杂的电路设计、采用高昂的设计成本,就能实现电流I的检测,非常符合首选方案的要求。
(2)电阻电压ADC采集方案缺点
电阻电压ADC采集方案,虽能帮助工程师实现电流的检测目的,但并非项目系统电路中的电流都能通过此方案检测。在电阻电压ADC采集方案图中,显而易见,检测电路中的电流Ia、电流Ib与电流Ic没有问题,可以分别检测;但若检测电流I,工程师则需要通过同时检测电流Ia、电流Ib与电流Ic,同时设计三个检测电路,同时处理三个电流采集数据,才能依据电流I = 电流Ia + 电流Ib + 电流Ic关系式间接确定电流I的检测,电路设计冗余复杂。
因此电阻电压ADC采集方案,适合电路中的电路Ia、电流Ib与电流Ic这种类似属性的电流检测,对于类似项目系统电流I的电流检测,则显得不是非常适合,不是最优方案。

电阻电压运算放大方案

电阻电压ADC采集方案,不适合项目系统电流I的检测,那工程师该如何去解决这个问题呢?如何去设计其相应的电路检测方案呢?有没有另外一种电路设计方案能实现呢?
当然有,答案是电阻电压运算放大方案。
电阻电压运算放大方案,是利用运算放大器的电压放大作用,将微弱的电压信号进行放大处理,送至ADC采集分析计算;与电阻电压ADC采集方案不同之处,在于采样电阻R的电压处理方式不同。
项目系统电流检测图
流过电阻R的电流I,是等于项目系统的电流。工程师运用电阻电压运算放大方案,通过测量电阻R两端的压降差,进而求得流过电阻R的电流I,最终可达到检测项目系统的电流功能目的。
电阻电压运算放大方案,具体是如何检测电路中电流功能的呢?方案设计的关键在于工程师选用的运算放大器芯片,它的性能直接影响电流检测的精度与准确度。
MPS高精度运算放大器MP8110芯片,一个专用于电流检测功能电路的芯片,适合在电流检测功能的研发项目上。工程师在具体的电路方案应用上,首先需要对MP8110芯片做个基本的了解。

MP8110运算放大器芯片的基本电路特性
(a)MP8110芯片引脚定义
MP8110芯片引脚定义图
  • Pin 1引脚SHDN:芯片关断控制引脚,高电平有效,即SHDN引脚为高电平时,芯片不工作;
  • Pin 2引脚NC:不需要连接的引脚;
  • Pin 3引脚RG1:输入电压放大倍数控制引脚,调节连接在RG1引脚的电阻阻值,控制芯片的放大 倍数,通常此引脚连接在采样电阻R电流方向的左端;
  • Pin 4引脚GND:芯片的参考地引脚;
  • Pin 5引脚OUT1:芯片的放大倍数输出电压引脚,适合阻性负载电路;
  • Pin 6引脚RG2:与Pin 3引脚RG1功能类似,区别在于此引脚连接在采样电阻R电流方向的右端;
  • Pin 7引脚VCC:芯片的工作电源电压引脚;
  • Pin 8引脚OUT2:芯片的放大倍数输出电压引脚,适合感性负载电路;
由于MP8110芯片在电流检测的功能电路应用中,被检测的对象为电阻,属于阻性负载,非感性负载,因此工程师在具体电路设计的过程中,只需使用MP8110芯片的Pin 5引脚OUT1功能,不需要Pin 8引脚OUT2的电路功能。
(b)MP8110芯片应用电路图
工程师在初步了解MP8110高精度运算放大器芯片引脚定义后,接下来的工作便是根据其电路特性设计相应的项目应用电路图
MP8110芯片应用电路图
在MP8110芯片应用电路图中,Rs电阻为采样电阻,作为电流I检测的功能电阻;RG1、RG2电阻与RGS电阻的阻值选择,设定了运算放大器的电压放大倍数,也就是芯片OUT1引脚的输出电压与Rs电阻两端的电压两者之间的比例关系,表现为
Vout1 = I * Rs * (RGS / RG1)
在电路开发中,为了ADC采集电路计算被检测的电流,MP8110芯片的OUT1引脚输出端直接与ADC采集端连接。举例说明
若被检测的电流大约为4A,采样电阻Rs取值为50mΩ,RG1电阻与RG2电阻取值为2KΩ,RGS电阻取值为20KΩ,MP8110芯片的OUT1引脚输出电压Vout1 = 0.5 * I;也就是MP8110芯片的OUT1引脚输出的电压与检测的电流关系为 Vout1 = 0.5 * I,工程师通过ADC采集功能,分析计算得出Vout1电压,即可完成电流I的检测功能。
电阻电压运算放大方案,虽能较好地实现了电路中的电流检测功能,存在优点之处,同样也存在一些不足之处
01 电阻电压运算放大方案优点
无论是小功能电路中的电流,还是项目系统的电流,电阻电压运算放大方案均能实现对其电流的检测功能;
02 电阻电压运算放大方案缺点
电路设计复杂,调试难度较大,设计成本高昂;

最后的总结

在电流检测功能的电路设计中,综合比较电阻电压ADC采集方案与电阻电压运算放大方案,工程师的选择:
如若被检测的电流I,是处于独立的小功能电路中,与其他小功能的电路电流不存在关系,工程师则优先选用电阻电压ADC采集方案,因为电路设计简单,设计成本低廉;
如若被检测的电流I,是处于项目系统的电源电路中,与其他电路中的电流存在一些叠加关系,工程师则优先选用电阻电压运算放大方案,因为选择电阻电压ADC采集方案则至少需要设计2个检测电路,最后通过相应的叠加关系计算才能得出最后被检测的电流,这样就增加了电路的计算难度,而选择电阻电压运算放大方案,则只需要设计1个检测电路即可。

硬件工程师及从业者都在关注我们

       
       

声明:


声明:文章来源电子工程师笔记。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。
投稿/招聘/推广/宣传 请加微信:woniu26a

推荐阅读

  • 电路设计-电路分析

  • EMC相关文章

  • 电子元器件

后台回复“加群,管理员拉你加入同行技术交流群。


硬件笔记本 一点一滴,厚积薄发。
评论 (0)
  •   航空兵训练与战术对抗仿真平台系统解析   北京华盛恒辉航空兵训练与战术对抗仿真平台系统是现代军事训练的关键工具,借助计算机技术构建虚拟战场,支持多兵种协同作战模拟,为军事决策、训练及装备研发提供科学依据。   应用案例   目前,已有多个航空兵训练与战术对抗仿真平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润航空兵训练与战术对抗仿真平台。这些成功案例为航空兵训练与战术对抗仿真平台的推广和应用提供了有力支持。   一、系统架构与核心功能   系统由模拟器、计算机兵力生
    华盛恒辉l58ll334744 2025-04-24 16:34 70浏览
  •   复杂电磁环境模拟系统平台解析   一、系统概述   北京华盛恒辉复杂电磁环境模拟系统平台是用于还原真实战场或特定场景电磁环境的综合性技术平台。该平台借助软硬件协同运作,能够产生多源、多频段、多体制的电磁信号,并融合空间、时间、频谱等参数,构建高逼真度的电磁环境,为电子对抗、通信、雷达等系统的研发、测试、训练及评估工作提供重要支持。   应用案例   目前,已有多个复杂电磁环境模拟系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润复杂电磁环境模拟系统。这些成功案例为复杂电
    华盛恒辉l58ll334744 2025-04-23 10:29 180浏览
  •   高海拔区域勤务与装备保障调度系统平台解析   北京华盛恒辉高海拔区域勤务与装备保障调度系统平台专为高海拔特殊地理环境打造,致力于攻克装备适应、人员健康保障、物资运输及应急响应等难题。以下从核心功能、技术特点、应用场景及发展趋势展开全面解读。   应用案例   目前,已有多个高海拔区域勤务与装备保障调度系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润高海拔区域勤务与装备保障调度系统。这些成功案例为高海拔区域勤务与装备保障调度系统的推广和应用提供了有力支持。   一、核心
    华盛恒辉l58ll334744 2025-04-24 10:13 83浏览
  •   有效样本分析决策系统平台全面解析   一、引言   北京华盛恒辉有效样本分析决策系统在当今数据驱动的时代,企业、科研机构等面临着海量数据的处理与分析挑战。有效样本分析决策系统平台应运而生,它通过对样本数据的精准分析,为决策提供有力支持,成为提升决策质量和效率的关键工具。   应用案例   目前,已有多个有效样本分析决策系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效样本分析决策系统。这些成功案例为有效样本分析决策系统的推广和应用提供了有力支持。   二、平台概述
    华盛恒辉l58ll334744 2025-04-24 11:13 78浏览
  •   陆地边防事件紧急处置系统平台解析   北京华盛恒辉陆地边防事件紧急处置系统平台是整合监测、预警、指挥等功能的智能化综合系统,致力于增强边防安全管控能力,快速响应各类突发事件。以下从系统架构、核心功能、技术支撑、应用场景及发展趋势展开全面解读。   应用案例   目前,已有多个陆地边防事件紧急处置系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润陆地边防事件紧急处置系统。这些成功案例为陆地边防事件紧急处置系统的推广和应用提供了有力支持。   一、系统架构   感知层:部
    华盛恒辉l58ll334744 2025-04-23 11:22 124浏览
  •   电磁频谱数据综合管理平台系统解析   一、系统定义与目标   北京华盛恒辉电磁频谱数据综合管理平台融合无线传感器、软件定义电台等前沿技术,是实现无线电频谱资源全流程管理的复杂系统。其核心目标包括:优化频谱资源配置,满足多元通信需求;运用动态管理与频谱共享技术,提升资源利用效率;强化频谱安全监管,杜绝非法占用与干扰;为电子战提供频谱监测分析支持,辅助作战决策。   应用案例   目前,已有多个电磁频谱数据综合管理平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁频谱数
    华盛恒辉l58ll334744 2025-04-23 16:27 187浏览
  •   通用装备论证与评估系统平台解析   北京华盛恒辉通用装备论证与评估系统平台是服务军事装备全生命周期管理的综合性信息化平台,通过科学化、系统化手段,实现装备需求论证、效能分析等核心功能,提升装备建设效益。   应用案例   目前,已有多个通用装备论证与评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润通用装备论证与评估系统。这些成功案例为通用装备论证与评估系统的推广和应用提供了有力支持。   一、系统分层架构   (一)数据层   整合装备性能、作战、试验等多源异
    华盛恒辉l58ll334744 2025-04-24 16:14 61浏览
  • 前言本文主要演示基于TL3576-MiniEVM评估板HDMI OUT、DP 1.4和MIPI的多屏同显、异显方案,适用开发环境如下。Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:VMware16.2.5、Ubuntu22.04.5 64bitU-Boot:U-Boot-2017.09Kernel:Linux-6.1.115LinuxSDK:LinuxSDK-[版本号](基于rk3576_linux6.1_release_v
    Tronlong 2025-04-23 13:59 131浏览
  •   后勤实验仿真系统平台深度解析   北京华盛恒辉后勤实验仿真系统平台依托计算机仿真技术,是对后勤保障全流程进行模拟、分析与优化的综合性工具。通过搭建虚拟场景,模拟资源调配、物资运输等环节,为后勤决策提供数据支撑,广泛应用于军事、应急管理等领域。   应用案例   目前,已有多个后勤实验仿真系统平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润后勤实验仿真系统平台。这些成功案例为后勤实验仿真系统平台的推广和应用提供了有力支持。   一、核心功能   (一)后勤资源模拟
    华盛恒辉l58ll334744 2025-04-23 15:39 162浏览
  •   海上训练与保障调度指挥平台系统解析   北京华盛恒辉海上训练与保障调度指挥平台系统是现代海上作战训练的核心枢纽,融合信息技术、GIS、大数据及 AI 等前沿技术,旨在实现海上训练高效组织、作战保障科学决策。以下从架构功能、应用场景、系统优势及发展挑战展开解读。   应用案例   目前,已有多个海上训练与保障调度指挥平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润海上训练与保障调度指挥平台。这些成功案例为海上训练与保障调度指挥平台的推广和应用提供了有力支持。   一
    华盛恒辉l58ll334744 2025-04-24 15:26 62浏览
  •   陆地装备体系论证与评估综合平台系统解析   北京华盛恒辉陆地装备体系论证与评估综合平台系统是契合现代军事需求而生的专业系统,借助科学化、智能化手段,实现对陆地装备体系的全方位论证与评估,为军事决策和装备发展提供关键支撑。以下从功能、技术、应用及展望展开分析。   应用案例   目前,已有多个陆地装备体系论证与评估综合平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润陆地装备体系论证与评估综合平台。这些成功案例为陆地装备体系论证与评估综合平台的推广和应用提供了有力支持。
    华盛恒辉l58ll334744 2025-04-24 10:53 86浏览
  • 故障现象一辆2016款奔驰C200L车,搭载274 920发动机,累计行驶里程约为13万km。该车组合仪表上的防侧滑故障灯、转向助力故障灯、安全气囊故障灯等偶尔异常点亮,且此时将挡位置于R挡,中控显示屏提示“后视摄像头不可用”,无法显示倒车影像。 故障诊断用故障检测仪检测,发现多个控制单元中均存储有通信类故障代码(图1),其中故障代码“U015587 与仪表盘的通信存在故障。信息缺失”出现的频次较高。 图1 存储的故障代码1而组合仪表中存储有故障代码“U006488 与用户界
    虹科Pico汽车示波器 2025-04-23 11:22 100浏览
  • 一、技术背景与市场机遇在智能家居高速发展的今天,用户对家电设备的安全性、智能化及能效表现提出更高要求。传统取暖器因缺乏智能感知功能,存在能源浪费、安全隐患等痛点。WTL580-C01微波雷达感应模块的诞生,为取暖设备智能化升级提供了创新解决方案。该模块凭借微波雷达技术优势,在精准测距、环境适应、能耗控制等方面实现突破,成为智能取暖器领域的核心技术组件。二、核心技术原理本模块采用多普勒效应微波雷达技术,通过24GHz高频微波信号的发射-接收机制,实现毫米级动作识别和精准测距。当人体进入4-5米有效
    广州唯创电子 2025-04-23 08:41 159浏览
  •   无人机结构仿真与部件拆解分析系统平台解析   北京华盛恒辉无人机结构仿真与部件拆解分析系统无人机技术快速发展的当下,结构仿真与部件拆解分析系统平台成为无人机研发测试的核心工具,在优化设计、提升性能、降低成本等方面发挥关键作用。以下从功能、架构、应用、优势及趋势展开解析。   应用案例   目前,已有多个无人机结构仿真与部件拆解分析系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机结构仿真与部件拆解分析系统。这些成功案例为无人机结构仿真与部件拆解分析系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-23 15:00 198浏览
  • 一、行业背景与市场需求高血压作为全球发病率最高的慢性病之一,其早期监测与管理已成为公共卫生领域的重要课题。世界卫生组织数据显示,全球超13亿人受高血压困扰,且患者群体呈现年轻化趋势。传统血压计因功能单一、数据孤立等缺陷,难以满足现代健康管理的需求。在此背景下,集语音播报、蓝牙传输、电量检测于一体的智能血压计应运而生,通过技术创新实现“测量-分析-管理”全流程智能化,成为慢性病管理的核心终端设备。二、技术架构与核心功能智能血压计以电子血压测量技术为基础,融合物联网、AI算法及语音交互技术,构建起多
    广州唯创电子 2025-04-23 09:06 169浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦