上海交大史志文团队Nature:超高质量石墨烯纳米带助力碳基纳米电子学

果壳硬科技 2024-03-29 14:46

欢迎星标 果壳硬科技


近日,上海交通大学史志文教授团队与合作者在Nature上发表题为“Graphene nanoribbons grown in hBN stacks for high-performance electronics”的研究论文。该研究开发了一种生长石墨烯纳米带的全新方法,成功实现了超高质量石墨烯纳米带在氮化硼层间的嵌入式生长,形成“原位封装”的石墨烯纳米带结构,并演示了所生长的石墨烯纳米带可用于构建高性能场效应晶体管器件。



石墨烯是一种由单层碳原子以蜂窝状排列而成的二维晶体,具有独特的电子结构和优异的性质,自2004年首次实验发现以来,就一直是科学研究的前沿和热点,并被期待用于未来高性能电子器件。然而,尽管石墨烯具有超高的载流子迁移率,但是本征石墨烯没有能隙,难以直接用来制作晶体管器件。相比之下,准一维的石墨烯纳米条带则因量子限域效应而打开能隙,且能隙大小可通过纳米带宽度和边缘结构来调控,有望成为未来高性能电子器件与芯片的理想候选材料,受到学术界和产业界的共同关注。


有鉴于此,科研人员投入了大量精力研究石墨烯纳米带的制备,尽管目前已经发展了多种制备石墨烯纳米带的方法,但在可用于半导体器件的高质量石墨烯纳米带的制备问题一直没有解决。特别地,已制备出的石墨烯纳米带的载流子迁移率均远低于理论值。此差异一方面来自于石墨烯纳米带的结构缺陷,另一方面来自于纳米带周围环境的无序。由于石墨烯纳米带的低维属性,其电子输运行为对周围环境非常敏感。为了提高低维材料器件性能,人们尝试了多种方法来减少环境无序效应。迄今为止最成功的方法是六方氮化硼(hBN)封装法。hBN是一种原子级平整的宽带隙二维层状绝缘体。多项研究表明被封装的低维材料器件性能显著提升。然而,已有的机械封装法效率很低,目前仅能用于科研领域,难以满足未来先进微电子产业发展的需要。


针对以上挑战,上海交通大学史志文教授团队开发出一种全新的制备方法,实现了石墨烯纳米带在hBN层间的嵌入式生长,形成“原位封装”的石墨烯纳米带。研究发现,该纳米带具有多种优异的结构特征,包括统一的手性结构,小于5纳米的宽度,以及亚毫米量级的长度。这些结构特征主要来源于hBN层间的超润滑特性(近零摩擦损耗)。由于这种高质量石墨烯纳米带在生长的同时就被氮化硼“原位封装”,其结构和性质可以免受外界环境因素和微纳加工的影响,纳米带场效应晶体管展现出优异的性能:载流子迁移率达4,600 cm2V–1s–1,开关比可达106


图一:石墨烯纳米带层间嵌入式生长的示意图和电子显微镜表征。


层间石墨烯纳米带的生长是通过一种纳米颗粒催化的化学气相沉积(CVD)实现的。实验中,催化剂纳米颗粒会在高温作用下运动并附着在hBN的边缘和台阶处。在这里,甲烷分子会在催化剂表面裂解出碳原子,随后这些碳原子会溶解到纳米颗粒中。当纳米颗粒中的碳含量过饱合后,纳米带会在颗粒表面形核同时嵌入hBN的层间。这些一维纳米带结构可以直接通过扫描电子显微镜(SEM)观察到。扫描透射电子显微镜(STEM)截面图像表明,镶嵌在hBN层间的纳米带宽度为3-5纳米,对应的能隙大小约为0.2~0.6 eV。


图二:手性统一的超长石墨烯纳米带。


在层间生长的石墨烯纳米带长度可达亚毫米量级,远大于以往报道的结果。结合其亚5纳米的宽度,层间纳米带的长宽比达到了105,比以往的结果大至少两个数量级。更重要的是,层间纳米带的具有统一的zigzag手性结构。统计结果表明,zigzag 纳米带的纯度随长度上升,且长度在20微米以上的纳米带全部为zigzag手性。理论上zigzag纳米带边缘存在自旋极化拓扑边缘态,对自旋电子学和自旋量子计算器件具有潜在的应用前景。


图三:氮化硼层间石墨烯纳米带嵌入式生长机理


为了揭示六方氮化硼层间超长zigzag 石墨烯纳米带的生长机理,史志文教授团队与武汉大学欧阳稳根教授团队、特拉维夫大学Michael Urbakh教授团队、深圳先进技术研究院丁峰教授团队的密切合作,发现层间超长zigzag 纳米带的形成是hBN层间超润滑特性(近零摩擦损耗)的结果。在生长过程中,石墨烯纳米带会在生长驱动力的作用下不断嵌入到hBN层间,必然涉及纳米带与hBN之间的相对滑移。研究人员通过进行分子动力学模拟和理论模拟发现,由于hBN特殊的晶体结构,纳米带在hBN层间的摩擦力显著小于在其表面的摩擦力。这解释了hBN层间生长的纳米带长度远超以往在hBN表面生长结果的反直觉现象。此外,相对于其他手性的纳米带,zigzag 纳米带可以在层间进行近乎无摩擦的滑动,最终导致了石墨烯纳米带的手性选择性生长。


图四:基于原位封装石墨烯纳米带的高性能场效应晶体管。


由于所生长的石墨烯纳米带被绝缘hBN“原位封装”,免受器件加工过程中吸附、氧化、环境污染和光刻胶接触的影响,所以理论上可获得极高性能纳米带电子器件。研究人员基于层间生长的纳米带制备了场效应晶体管(FET)器件,测量结果表明,石墨烯纳米带FETs都表现出典型的半导体器件的电学输运特性,室温下的开关比可达106。更值得关注的是,器件的载流子迁移率高达4,600 cm2V–1s–1,超越以往报道的结果。这些出色的性能表明层间石墨烯纳米带有望在未来的高性能碳基纳米电子器件中扮演重要的角色。本研究向微电子领域先进封装架构的原子制造迈出了关键一步,预计将对碳基纳米电子学领域产生重要影响。


图五:该成果上海交大团队主要成员:(从左至右)陈佳俊、沈沛约、娄硕、吕博赛、史志文


研究团队

(请上下滑动查看)

论文共同第一作者为上海交通大学物理与天文学院吕博赛、陈佳俊、娄硕、沈沛约、谢京旭、武汉大学王森和韩国蔚山国立科学技术学院的邱璐和Izaac Mitchell。共同通讯作者为史志文教授、特拉维夫大学Michael Urbakh教授、深圳先进技术研究院丁峰教授和武汉大学欧阳稳根教授。论文的合作者还包括上海交通大学物理与天文学院王世勇教授、李听昕教授、陈国瑞教授、王孝群教授、贾金锋教授、梁齐教授、李灿博士、胡成博士、周先亮,以及以色列特拉维夫大学Oded Hod教授,日本国立材料研究所Kenji Watanabe教授和Takashi Taniguchi教授。本工作所涉及TEM表征在上海交通大学分析测试中心完成,器件加工在上海交大物理与天文学院微纳加工平台完成,计算模拟主要在武汉大学超算中心和国家天河超算中心完成,本工作得到科技部、自然科学基金委的资助,在此深表感谢。

论文信息

发布期刊 Nature

发布时间 2024年3月27日

文章标题 Graphene nanoribbons grown in hBN stacks for high-performance electronics

(https://www.nature.com/articles/s41586-024-07243-0)

研究团队 | 作者

酥鱼 | 编辑


如果你是投资人、创业团队成员或科研工作者,对果壳硬科技组织的闭门会或其它科创服务活动感兴趣,欢迎扫描下方二维码,或在微信公众号后台回复“企业微信”添加我们的活动服务助手,我们将通过该渠道组织活动——


果壳硬科技 果壳旗下硬科技服务品牌,致力于连接科学家与投资人、创业者,在新一轮技术革命和资本流动中,做最懂硬核科技的团队。
评论
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 43浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 55浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦