实现高降压比的三种紧凑型解决方案请收藏!

原创 亚德诺半导体 2024-03-28 19:00




本文将阐述为何非隔离式DC-DC降压转换器(在本文中简称为降压转换器)在高输出电流下将高DC输入电压转换为很低的输出电压时会面临严峻挑战,并介绍可以实现高降压比,同时保持小尺寸的三种不同方法。


系统设计人员可能会面临以下挑战:在高输出电流下将高DC输入电压下变频为极低输出电压(例如在3.5 A时从60 V降至3.3 V),同时保持系统的高效率、小尺寸并实现简单设计。

将高输入-输出电压差值与高电流结合使用,会因为功耗过高自动将线性稳压器排除在外。因此,设计人员必须在这些条件下选择开关拓扑。但是,即使使用这种拓扑,对于空间有限的应用要实现足够紧凑的设计仍然相当困难。


DC-DC降压转换器面临的挑战


要实现高降压比,一种方案是使用降压转换器,因为它是将输入电压高效降至更低的输出电压(例如,VIN = 12 V降至VOUT = 3.3 V)、仍然具有大量电流,且保持小尺寸的一种拓扑选项。但是,在某些情况下,降压转换器要保持输出电压稳定,会面临严峻的挑战。为了理解这些挑战,我们需要记住,在连续导通模式(CCM)下工作的降压转换器的占空比(D)可简化为:


占空比和开关频率(fSW)的关系如下所示,其中导通时间(tON)是指在每次开关期间(T),控制FET保持开启的时长:


结合公式1和公式2可以看出,tON如何受降压比和fSW的影响:


从公式3可以看出,当输入-输出电压比(VIN⁄VOUT)和⁄或fSW增大时,导通时间会降低。这意味着降压转换器必须能够以很低的导通时间运行,以便在高VIN⁄VOUT比率下调节CCM中的输出电压,而在高fSW下这会更难实现。
我们假设在一个应用中,VIN(MAX) = 60 V,VOUT = 3.3 V,IOUT(MAX) = 3.5 A。在必要时,我们需要使用 LT8641 数据手册中的数值,因为在之后的章节中,我们将提供采用LT8641的解决方案。所需的最小导通时间(tON(MIN))对应最高输入电压(VIN(MAX))。为了评估这个tON(MIN),建议提高公式3的准确度。通过包含降压转换器的两个功率MOSFET的压降VSW(BOT)和VSW(TOP),并用VIN(MAX)替代VIN,我们得出:


通过在公式4中使用VIN(MAX)、fSW = 1 MHz,我们得出tON(MIN)为61 ns。为了计算VSW(BOT)和VSW(TOP),我们使用了LT8641数据手册中提供的RDS(ON)(BOT) 和RDS(ON)(TOP)值,且已知VSW(BOT) = RDS(ON)(BOT) × IOUT(MAX),VSW(TOP) = RDS(ON)(TOP) × IOUT(MAX)。从上述公式可得到61 ns的数值,这样短的时间数值,降压转换器很难保证tON(MIN);所以,系统设计人员不得不寻找可替代的拓扑。目前提供三种可实现高降压比的可行解决方案。

从上述公式可得到61 ns的数值,这样短的时间数值,降压转换器很难保证tON(MIN);所以,系统设计人员不得不寻找可替代的拓扑。目前提供三种可实现高降压比的可行解决方案。

三种紧凑型解决方案



解决方案1:使用LT3748非光耦反激式变压器

第一种选择是使用隔离拓扑,变压器具有N:1匝数比,负责执行大部分下变频。为此,ADI公司提供反激式控制器,例如LT3748,该控制器不需要第三个变压器绕组或光隔离器,使设计更简单,更紧凑。图1显示适用于这种情况的 LT3748 解决方案。

尽管与标准反激式设计相比,LT3748解决方案简化了设计并节省了空间,但仍然需要使用变压器。对于无需隔离输入端和输出端的应用,最好是避免使用该组件,相比非隔离解决方案,该组件会增加设计复杂性和增大尺寸。


解决方案2:使用LTM8073和LTM4624 µModule器件

作为一种替代方案,设计人员可以通过两个步骤进行下变频。要实现更少的组件数量(仅为10个),可以使用2个µModule®器件和8个外部组件,如图2所示。此外,这两款µModule器件已集成各自的功率电感,为系统工程师免除了一项困难的设计任务。LTM8073 和 LTM4624 均采用BGA封装,尺寸分别为9 mm × 6.25 mm × 3.32 mm和6.25 mm × 6.25 mm × 5.01 mm (L × W × H),可提供小尺寸解决方案。

由于在这些条件下LTM4624展现的效率为89%,LTM8073最多为LTM4624的输入端提供1.1 A。由于LTM8073可以提供高达3 A输出电流,因此可用来为其他电源轨供电。为此,在图2中,我们选择12 V作为中间电压(VINT)。

尽管应避免使用变压器,但有些设计人员可能不愿使用需要两个独立的降压转换器的解决方案,尤其是无需采用中间电压为其他电源轨供电的情况下。


解决方案3:使用LT8641降压转换器

所以,在许多情况下,使用单个降压转换器成为首选,因为它是比较理想的解决方案,具有系统效率高、小尺寸和设计简单的特点。但是,我们前面不是展示降压转换器无法应对高VIN⁄VOUT和高fSW吗?

这个说法可能适用于大部分降压转换器,但并非全部。ADI产品系列中包含LT8641之类降压转换器,在整个工作温度范围内,它具有较短的最低导通时间,一般为35 ns(最大50 ns)。这些规格都在之前计算得出的61 ns最小导通时间以下,为我们提供了第3种可行的紧凑型解决方案。图3显示LT8641电路有多么简单。

还有一点值得注意,LT8641解决方案可能是3种解决方案中最高效的。事实上,如果与图3相比必须进一步优化效率,我们可以降低fSW并选择更大的电感尺寸。

尽管也可以通过解决方案2来降低fSW,但集成功率电感后无法灵活提高效率,达到高于某个点的目标。此外,使用两个连续下变频级对效率的负面影响较小。

在使用解决方案1时,由于在边界模式下运行,以及在非光学反馈设计中移除了所有组件,因此反激式设计的效率非常高。但是,效率不能完全优化,因为可选的变压器数量有限,而解决方案3则有广泛的电感产品系列可供选择。

图 1. 采用 LT3748 的电路解决方案,将 60 V 输入下变频至 3.3 V 输出。

图 2. 采用 LTM8073 和 LTM4624 的电路解决方案,将 60 V 输入下变频至3.3 V 输出。

图 3. 采用 LT8641 的电路解决方案,将 60 V 输入下变频至 3.3 V 输出。


检查LT8641是否满足要求的另一种方法


在大多数应用中,公式4中唯一可调的参数是开关频率。因此,我们重新变换公式4,以评估LT8641在给定条件下允许的最大fSW。于是,我们得到公式5,LT8641数据手册的第16页也提供了这个公式。


我们在以下示例中使用此公式:VIN = 48 V,VOUT = 3.3 V,IOUT(MAX) = 1.5 A, fSW = 2 MHz。汽车和工业应用中经常使用48 V输入电压。在公式5中代入这些条件后,我们得出:


因此,在给定的应用条件下,在fSW高达2.12 MHz时,LT8641能够安全运行,证实LT8641是适合此应用的一个不错的选择。


结论


本文提出了三种不同的方法,以在高降压比下实现紧凑型设计。LT3748反激式解决方案不需要使用笨重的光隔离器,推荐用于需要隔离输入端和输出端的设计。第2种方法需要使用LTM8073和LTM4624 µModule器件,当设计人员为应用选择最佳电感犹豫不决,以及⁄或何时必须提供额外的中间电源轨时,这种解决方案会非常有用。第3种方法基于LT8641降压转换器进行设计,如果只是要求实现陡电压下变频时,可提供紧凑且简单的解决方案。



👇点击探索ADI“芯”世界

·
·


亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 63浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 40浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 66浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 98浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦