作为一种替代方案,设计人员可以通过两个步骤进行下变频。要实现更少的组件数量(仅为10个),可以使用2个µModule®器件和8个外部组件,如图2所示。此外,这两款µModule器件已集成各自的功率电感,为系统工程师免除了一项困难的设计任务。LTM8073 和 LTM4624 均采用BGA封装,尺寸分别为9 mm × 6.25 mm × 3.32 mm和6.25 mm × 6.25 mm × 5.01 mm (L × W × H),可提供小尺寸解决方案。 由于在这些条件下LTM4624展现的效率为89%,LTM8073最多为LTM4624的输入端提供1.1 A。由于LTM8073可以提供高达3 A输出电流,因此可用来为其他电源轨供电。为此,在图2中,我们选择12 V作为中间电压(VINT)。 尽管应避免使用变压器,但有些设计人员可能不愿使用需要两个独立的降压转换器的解决方案,尤其是无需采用中间电压为其他电源轨供电的情况下。
解决方案3:使用LT8641降压转换器
所以,在许多情况下,使用单个降压转换器成为首选,因为它是比较理想的解决方案,具有系统效率高、小尺寸和设计简单的特点。但是,我们前面不是展示降压转换器无法应对高VIN⁄VOUT和高fSW吗? 这个说法可能适用于大部分降压转换器,但并非全部。ADI产品系列中包含LT8641之类降压转换器,在整个工作温度范围内,它具有较短的最低导通时间,一般为35 ns(最大50 ns)。这些规格都在之前计算得出的61 ns最小导通时间以下,为我们提供了第3种可行的紧凑型解决方案。图3显示LT8641电路有多么简单。 还有一点值得注意,LT8641解决方案可能是3种解决方案中最高效的。事实上,如果与图3相比必须进一步优化效率,我们可以降低fSW并选择更大的电感尺寸。 尽管也可以通过解决方案2来降低fSW,但集成功率电感后无法灵活提高效率,达到高于某个点的目标。此外,使用两个连续下变频级对效率的负面影响较小。 在使用解决方案1时,由于在边界模式下运行,以及在非光学反馈设计中移除了所有组件,因此反激式设计的效率非常高。但是,效率不能完全优化,因为可选的变压器数量有限,而解决方案3则有广泛的电感产品系列可供选择。 图 1. 采用 LT3748 的电路解决方案,将 60 V 输入下变频至 3.3 V 输出。 图 2. 采用 LTM8073 和 LTM4624 的电路解决方案,将 60 V 输入下变频至3.3 V 输出。 图 3. 采用 LT8641 的电路解决方案,将 60 V 输入下变频至 3.3 V 输出。
根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规