吴新宙到英伟达后的首秀,说了些什么?

原创 赛博汽车 2024-03-28 07:31

作者 | 黎   澜

编辑 | 章涟漪

半年时间,英伟达汽车业务无论是商业化进程,还是技术成熟度,都有了不小进步,这是如何实现的?

近日,GTC 2024大会上,英伟达汽车事业部副总裁吴新宙发表了《加速向 AI 定义的汽车的转变》主题演讲,用时52分钟,从技术角度给予了解答

这也是吴新宙入职英伟达后的首次正式对外演讲

作为自动驾驶领域大拿,吴新宙曾在高通工作10余年,主导自动驾驶解决方案。2019年,在何小鹏的盛情邀请下,吴新宙加盟小鹏汽车,全面主导小鹏汽车的ADAS业务,主导实现了NGP、XNGP等项目落地。

同时拥有竞争对手高通,以及自身工程化最好样本小鹏汽车的高管背景,吴新宙可以说是最适合英伟达的人。

确实,正如黄仁勋所期待的,在吴新宙加盟后,英伟达汽车业务肉眼可见的更有起色。一方面,团队规模不断扩大,特别是自动驾驶中国团队不断扩充;另一方面,技术不断取得突破,截止目前,其已经帮助英伟达搭建了自动驾驶全栈自研部门,并且团队实现将AV1.0(AI Vehicle)升级至AV2.0

此次大会上,吴新宙对外分享了入职英伟达220多天以来的故事,讲述了英伟达如何以更少的代码、更大规模的模型、更高的算力和更多的数据,实现以AI为中心的自动驾驶汽车 2.0时代到来。

以下是吴新宙演讲的主要内容。

01
AV2.0的核心技术优势,在于“雷神”

吴新宙表示,首先,自动驾驶仍然是有商业前景的。

在新能源渗透率稳步提升的大前提下,根据其预测,2030财年L3级别自动驾驶市场仍将呈现显著上升趋势。

同时,随着生成式AI的发展,车载AI也有了长足的发展,经历了从规则、算法驱动型软件栈,到AI增强型软件栈再到端到端AI软件栈的过程。

而英伟达AV2.0的核心技术优势,在于拥有Drive Thor(雷神)芯片。在智能驾驶方面,Thor发挥的长处是“低精度运算”,这意味着可以输入模糊的、多模态的、不确定的数据,通过AI自动生成能力还原出有逻辑的远算方式。

相比于前代的Orin平台,Thor在LLAMA-7B的测试环境中能够实现高达9倍的性能提升。
另外,除了黄仁勋高调官宣的Blackwell GPU提供卓越性能以外,处理器中的ARM Neoverse V3AE CPU也提供了强大的单线程性能,这对复杂场景进行快速决策尤为关键。在SPECrate®2017_int_base的基准测试中,Thor比Orin预计有2.3倍的性能提升。

相较于上一代Xaiver,Orin实现了七倍的算力提升,达到245TFLOPS ,而Thor则达到了惊人的2000 TSFLOPS浮点算力。

或许,Orin没有能够真正实现L5级别的Robotaxi,Thor能够完成。

硬件的提升必然需要软件配套设施一同进步。目前,吴新宙团队研发的AV2.0还可以解决上一代搭载Orin芯片的AV1.0存在的痛点。

原有的AV1.0需要大量数据训练,新一代车载软件利用仿真技术模拟各种驾驶场景,降低对真实数据的依赖。

根据吴新宙介绍,传统的自动驾驶系统只具备几秒钟的短期系统记忆,这让AV1.0的决策可能是缺乏连贯性的。AV2.0利用大语言模型(LLM)逻辑推理的能力,增强了系统决策的连贯性和上下文感知能力。

“英伟达自动驾驶团队目前还在致力于让AV系统更具‘可解释性’,那就是让自动驾驶不再‘黑箱’,开发出一套降低信息差,方便对外解释的算法。”在吴新宙看来,这对于消除大众对自动驾驶的疑虑至关重要。

02
AV2.0技术的底层技术创新

活动上,吴新宙还展示了AV2.0技术的底层技术创新:基于VLM的基础模型(VLM Based Foundation Model,视觉语言模型),由此形成的PARA-Driving,搭建实时自动驾驶的并行化架构。

目前,端到端自动驾驶有两种技术路线。

一种是UniAD(Unified Autonomous Driving,自动驾驶通用算法框架),这个方案强调同时操控多个模态,使传感器搜集到的数据在训练过程中朝着“整体最优”的方向进行。

另一种则是更直接的VLM,实现过程和人类驾驶行为相似:以眼睛作为视觉输入信号,直接作用在方向盘和刹车油门踏板上。这种直接端到端变相地扩大了模型的搜索空间,需要用更多的数据、更大的模型、更强的算力才能防止在特定场景的过拟合,在驾驶体验中,多半是“莫名其妙的刹车”。

为了降低干扰,吴新宙团队对第二种方案进行了优化,将Transformer融合进自动驾驶的基础模型,形成PARA-Driving的终极答案。下图是此模型的功能布局。

吴新宙表示,PARA-drive将信息变成Tokens,再放进Transformer模型里分析,化整为零,处理起来更轻松。

据演示,相比于UniAD6 FPS的夜间运行速度,PARA-drive在夜间驾驶的实际应用场景中达到了26 FPS的高帧率,也就是说,夜视效果能达到UniAD的四倍

当然,这并不意味着要全盘替换原有的系统软件栈。吴新宙指出,现在的技术还不足以让VLM为主的基础模型全量进入使用,初始阶段将处于"影子模式"(shadow mode),团队会通过与人类驾驶行为进行不断比较而微调。

随着时间的推移,现有的技术栈将逐渐被淘汰,但出于安全考虑,两种栈可能需要共存一段时间。

信息搜集处理步骤告一段落,接下来吴新宙开始介绍AV方案中能提供物理模拟引擎的部分。当然,这也是英伟达以游戏显卡起家的老本行了。
仿真模拟(Simulation)的关键作用毋庸置疑,这是取代实车测试所需的巨大成本的关键一步

良好模拟的关键属性包括像素保真度(适用于相机、雷达、超声波、激光雷达等),场景保真度和可扩展性,以及行为保真度。无传感器操作允许在计算上更具可扩展性。英伟达的AV仿真模拟可以在有或没有传感器信息的情况下操作,极大地降低了成本。AV模型模拟的工作流,让端到端模型与场景库和功能模块环环相扣。

总体而言,吴新宙团队开发的基础模型的功能如下。

通过云端和车端统一的基础模型,有三个实现场景,首先最直观的是车内助手(In-cabin Assistant),使用基础模型来提供车内助手服务,可能包括语音识别、自然语言处理和用户交互等功能。

自动标注(Auto-labeling),利用基础模型来自动标记训练数据,对于大量的自动驾驶数据来说,可以极大程度地降低成本、提高效率。

最后是安全评估(Safety Evaluation),确保自动驾驶系统的性能和决策符合安全标准。在自动驾驶的安全问题需要得到确认的共识下,吴新宙阐述了NVIDIA DRIVE安全平台在保障自动驾驶汽车的安全方面的全面举措。

03
全球首个端到端AI安全平台

安全性,几乎是全球自动驾驶从业者的共识。英伟达自动驾驶DRIVE平台是全球汽车生产领域首个也是唯一一个端到端的智能安全平台。

目前,英伟达Drive平台有四大支柱,分别是开发过程、硬件、软件建设和底层架构。

英伟达在人力部署层面足见对安全的重视。据吴新宙介绍,有15000名工程师投入到安全部门的研发工作。

硬件安全机制经过21亿个晶体管的安全评估,吴新宙也提到了硬件退化效应的检测和ASIL D(Automotive Safety Integrity Level)系统性。

软件与架构是一个全栈功能安全的体系结构,共计500万行代码经过安全评估,还有德国技术监督协会认证的DRIVE OS和安全传感器以及端到端的认证。

底层架构层面,Drive平台提供安全保障的云服务和工具每日会进行200万次端到端集成测试,确保了安全的开发和测试以及大规模的项目周期管理。

04
授人以鱼,不如授人以渔

另外,英伟达还专门召开了中文的专家技术解读论坛,解释了吴新宙发言的核心技术亮点、应用场景,以及自动驾驶方案的商业落地。

汽车数据中心业务总监陈晔还做了Q&A,针对的问题是英伟达对国内厂商的服务方式。

陈晔提到,基于中美自动驾驶应用场景的差异化,在美国本土英伟达往往给车企做的是NDAS封装一站式服务,意味着直接给到完整的自动驾驶解决方案;服务国内的新能源厂商的时候,英伟达更倾向于提供一套更适配的算法,或者干脆成为算法开发过程中的指导者。

还有人对算力所需的硬件配置较为好奇。随着对算力要求的提升,相应的“卡”的数量也会有一定提升。陈晔表示,在AV1.0时代,领先的客户需求大概是2000台,在AV2.0时代,就产生了一万台GPU的需求,这种量级的变化对有些车企来说是难以承受的。当然,这是以H100作为算力计算单位,当Blackwell成为主流GPU的时候,企业所需的硬件成本会有所下降。

以及,陈晔表示,GPU 不仅可以用来自动驾驶研发,还可以有其他的应用场景,例如大语言模型、智能座舱等等,未来对“卡”的依赖,只增不减。

陈晔表示,英伟达会帮客户去做很多加速工作,从数据处理到训练模型优化到推理计算、以及到仿真,基于神经网络重建,由英伟达自动驾驶最核心的技术团队来操盘。

这种个性化定制服务,即英伟达企业NVRE服务,服务方式是AI enterprise。这种个性化设计是基于车企信任英伟达的前提,即愿意分享数据的基础之上的。

车企给英伟达场景数据,训练更好的大模型,英伟达再用优化过的模型给车企自动驾驶方案赋能,收集更多维度的数据,这正是所有人工智能相关的产品的终极目标,打造数据飞轮,靠自身商业化落地即可精进。

目前看来,吴新宙来到英伟达“深造”,实际上是更靠近了技术研发所需的算力“水源”,加上从0到1的小鹏智驾经验,无论对于英伟达,还是对整个行业来说,都有1+1大于2的效果。

-END-

更多阅读——

赛博汽车 聚焦智能汽车、自动驾驶,与产业共同成长.
评论 (0)
  •     今天,纯电动汽车大跃进牵引着对汽车电气低压的需求,新需求是48V。车要更轻,料要堆满。车身电子系统(电子座舱)从分布改成集中(域控),电气上就是要把“比12V系统更多的能量,送到比12V系统数量更少的ECU去”,所以,电源必须提高电压,缩小线径。另一方面,用比传统12V,24V更高的电压,有利于让电感类元件(螺线管,电机)用更细的铜线,缩小体积去替代传统机械,扩大整车电气化的边界。在电缆、认证行业60V标准之下,48V是一个合理的电压。有关汽车电气低压,另见协议标准第
    电子知识打边炉 2025-04-27 16:24 239浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 147浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 119浏览
  •  集成电路封装测试是确保芯片性能与可靠性的核心环节,主要包括‌晶圆级测试(CP测试)‌和‌封装后测试(FT测试)‌两大阶段,流程如下:一、晶圆级测试(CP测试)1.‌测试目的‌:在晶圆切割前筛选出功能缺陷或性能不达标的晶粒(Die),避免后续封装环节的资源浪费,显著降低制造成本。2.‌核心设备与操作‌l ‌探针台(Prober)‌:通过高精度移动平台将探针与晶粒的Pad jing准接触,实现电气连接。l ‌ATE测试机‌:提供测试电源、信号输入及功能向量,接收晶粒反
    锦正茂科技 2025-04-27 13:37 195浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 105浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 107浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 104浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 82浏览
  • 在电子电路设计和调试中,晶振为电路提供稳定的时钟信号。我们可能会遇到晶振有电压,但不起振,从而导致整个电路无法正常工作的情况。今天凯擎小妹聊一下可能的原因和解决方案。1. 误区解析在硬件调试中,许多工程师在测量晶振时发现两端都有电压,例如1.6V,但没有明显的压差,第一反应可能是怀疑短路。晶振电路本质上是一个交流振荡电路。当晶振未起振时,两端会静止在一个中间电位,通常接近电源电压的一半。万用表测得的是稳定的直流电压,因此没有压差。这种情况一般是:晶振没起振,并不是短路。2. 如何判断真
    koan-xtal 2025-04-28 05:09 130浏览
  • 2025年全球人形机器人产业迎来爆发式增长,政策与资本双重推力下,谷歌旗下波士顿动力、比亚迪等跨国企业与本土龙头争相入局,产业基金与风险投资持续加码。仅2025年上半年,中国机器人领域就完成42笔战略融资,累计金额突破45亿元,沪深两市机器人指数年内涨幅达68%,印证了资本市场对智能终端革命的强烈预期。值得关注的是,国家发展改革委联合工信部发布《人形机器人创新发展行动计划》,明确将仿生感知系统、AI决策中枢等十大核心技术纳入"十四五"国家重大专项,并设立500亿元产业引导基金。技术突破方面,本土
    电子资讯报 2025-04-27 17:08 248浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 79浏览
  • 探针台作为高精度测试设备,在光电行业的关键器件研发、性能测试及量产质量控制中发挥核心作用,主要涵盖以下应用场景与技术特性:一、光电元件性能测试1.‌光电器件基础参数测量‌l 用于LED、光电探测器、激光器等元件的电流-电压(I-V)特性、光功率、响应速度等参数测试,支撑光通信、显示技术的器件选型与性能优化。l 支持高频信号测试(如40GHz以上射频参数),满足高速光调制器、光子集成电路(PIC)的带宽与信号完整性验证需求。2.‌光响应特性分析‌l 通过电光转换效率测
    锦正茂科技 2025-04-27 13:19 122浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦