英伟达GB200架构解析:互联架构和未来演进

谈思实验室 2024-03-26 18:21

点击上方蓝字谈思实验室

获取更多汽车网络安全资讯

01

GB200互联架构解析

1.1 NVLink带宽计算

英伟达在对NVLINK的传输带宽计算和对于SubLink/Port/Lane的概念上存在很多混淆的地方,通常单颗B200的NVLINK 5带宽是1.8TB/s,这是做计算的人算带宽通常按照内存带宽的算法以字节每秒(Byte/s)为单位。而在NVLink Switch上或者IB/Ethernet交换机和网卡上,是Mellanox的视角以网络带宽来计算的,通常是以传输的数据位为单位,即比特每秒(bit/s)。

详细解释一下NVLINK的计算方式,NVLINK 3.0开始由四个差分对构成一个"sub-link"(英伟达经常对它用Port/Link,定义有些模糊),这4对差分信号线同时包含了接收和发送方向的信号线,而通常在计算网络带宽时,一个400Gbps的接口是指的同时能够收发400Gbps的数据,如下图所示:

它总共由4对差分信号线构成RX/TX各两对,从网络的视角来看是一个单向400Gbps的链路,而从内存带宽的视角是支持100GB/s的访存带宽。

1.1.1 NVLINK 5.0 互联带宽

在Blackwell这一代采用了224G Serdes,即sub-link的传输速率为200Gbps * 4(4对差分线)/8 =100GB/s,从网络来看单向带宽为400Gbps。B200总共有18个sublink,因此构成了 100GB/s * 18 = 1.8TB/s的带宽,而从网络的视角来看等同于9个单向400Gbps的接口。同理,在NVSwitch的介绍中声明的是 Dual 200Gb/sec SerDes构成一个400Gbps的Port。

为了方便后文的叙述,我们对这些术语进行统一定义如下:

B200 NVLINK带宽为1.8TB/s,由18个Port构成,每个Port 100GB/s,由四对差分线构成,每个Port包含两组224Gbps的Serdes (2x224G PAM4 按照网络接口算为每端口单向400Gbps带宽)。

1.1.2 NVLINK 4.0 互联

我们再补充一下Hopper,在NVLINK 4.0中采用了112G Serdes,即单对差分信号线可以传输100Gbps,累计单个NVLINK的Sub-link构成4x100Gbps= 50GB/s,支持NVLINK 4.0的Hopper这一代产品有18个sub-link(port),则单个H100支持50GB/s * 18 = 900GB/s,单机8卡利用4个NVswitch连接,如下图所示:

它还可以增加第二层交换机构成一个256卡的集群。

扩展接口采用OSFP的光模块。

如下图所示,OSFP光模块可以支持16对差分信号线, 因此单个OSPF支持4个NVLINK Port。

即下图中NVLink Switch包含32个OSFP光模块接口连接器,累计支持32 * 4 = 128个NVLINK4 Port。

1.2 GB200 NVL72

GB200 NVL72的Spec如下图所示,本文主要讨论NVLINK相关的问题。

一个GB200包含一颗Grace 72核的ARM CPU和2颗Blackwell GPU。

整个系统由Compute Tray和Switch Tray构成,一个Compute Tray包含两颗GB200子系统,累计4颗Blackwell GPU。

一个Switch Tray则包含两颗NVLINK Switch芯片,累计提供72 * 2 = 144个NVLINK Port,单颗芯片结构如下,可以看到上下各36个Port,带宽为7.2TB/s,按照网络的算法是28.8Tbps的交换容量,相对于当今最领先的51.2Tbps交换芯片小一些,但是需要注意到它由于实现SHARP(NVLS)这样的功能导致的。

整个机柜支持18个Compute Tray和9个Switch Tray,因此构成了一个单机柜72个Blackwell芯片全互联的架构,即NVL72。

单个GB200子系统则包含2 * 18 = 36个NVLink5 Port,整个系统对外互联上并没有采用OSFP的光模块接口,而是直接通过一个后置的铜线背板连接,如下图所示:


关于光退铜进这些金融机构分析师的说法其实是片面的,Hopper那一代是考虑的相对松耦合的连接方式,导致这些分析师过分的夸大了光模块的需求。而且当时对机柜散热部署等要求更加灵活。而这一代是在单机柜内整柜子交付,属于类似于IBM大型机的交付逻辑,自然而然地就选择了铜背板,同时单个B200功耗更高,整机液冷交付同时还有功耗约束,从功耗的角度来看换铜也可以降低很多。

整个NVL72的互联拓扑如下所示:

每个B200有18个NVLINK Port,9个Switch Tray刚好共计18颗NVLINK Swtich 芯片,因此每个B200的Port连接一个NVSwitch芯片,累计整个系统单个NVSwitch有72个Port,故整个机器刚好构成NVL72,把72颗B200芯片全部连接起来。

1.3 NVL576

我们注意到在NVL72的机柜中,所有的交换机已经没有额外的接口互联构成更大规模的两层交换集群了,从英伟达官方的图片来看,16个机柜构成两排,虽然总计正好72 * 8个机柜构成576卡集群的液冷方案,单是从机柜连接线来看,这些卡更多的是通过Scale-Out RDMA网络互联的,而并不是通过Scale-Up的NVLINK网络互联。

对于一个32,000卡的集群也是通过这样的NVL72的机柜,一列9个机柜,4个NVL72和5个网络机柜,两列18个机柜构成一个Sub-Pod,并通过RDMA Scale-Out网络连接。

当然这个并不是所谓的NVL576,如果需要支持NVL576则需要每72个GB200配置18个NVSwitch,这样单机柜就放不下了,事实上我们注意到官方有这样一段话:

官方说NVL72有单机柜版本,也有双机柜的版本,并且双机柜每个Compute Tray只有一个GB200子系统,另一方面我们注意到NVSwitch上有空余的铜缆接头,很有可能是为了不同的铜背板连接而特制的。

这些接口是不是会在铜互联背板上方再留一些OSFP Cage来用于第二层NVSwitch互联就不得而知了,但这样的方法有一个好处,单机柜的版本是Non-Scalable的,双机柜版本的是Scalable的,如下图所示:

两个机柜的版本有18个NVSwitch Tray,可以背靠背互联构成NVL72.虽然交换机多了一倍,但是为以后扩展到576卡集群,每个交换机都提供了36个对外互联的Uplink,累计单个机柜有36 * 2 * 9 =648个上行端口,构成NVL576需要有16个机柜,则累计上行端口数为 648 * 16 = 10,368个,实际上可以由9个第二层交换平面构成,每个平面内又有36个子平面,由18个Switch Tray构成,NVL576的互联结构如下所示:

1.4 从业务视角看到NVL576

对于NVL576这样超大规模的单一NVLink Scale-Up组网是否真的有客户,我个人是持怀疑态度的,AWS也只选择了NVL72来提供云服务。主要的问题是2层组网的可靠性问题和弹性售卖的问题来看,NVL576并不是一个好的方案,系统复杂性太高。

这样的方案存在的价值和当年思科搞CRS-1 MultiChassis集群类似,当年思科也是弄了一个16卡单个机柜,累计可以通过8个8个交换矩阵机柜互联72个线卡机柜来构成一个超大规模系统。主要是需要在市场上留一个技术领先的flag/benchmark,最终这样大规模的理论存在的系统埋单的用户几乎没有。

另一方面是从下一代大模型本身的算力需求来看的,meta的论文《How to Build Low-cost Networks for Large Language Models (without Sacrificing Performance)?》[1]讨论过, 对于NVLink互联的Scale-Up网络,论文中将其称为一个(High Bandwidth Domain,HBD),对HBD内的卡的数目K进行了分析:

针对GPT-1T的模型来看,K=36以上时对性能提升相对于K=8还是很明显的,而对于K>72到K=576时的边际收益相对于系统的复杂性而言是得不偿失的,另一方面我们可以看到,当Scale-Up的NVLINK网络规模增大时,实际上HBD之间互联的RDMA带宽带来的性能收益在减小,最终的一个平衡就是通过NVL72并用RDMA Scale-Out来构建一个32,000卡的集群。

02

互联系统演进:思科的故事

2.1 算力/内存瓶颈带来的分布式架构

最早的时候,思科的路由器是采用单颗PowerPC处理器执行转发的。随着互联网的爆发,对于路由查表等访存密集型计算导致了性能瓶颈,因此逐渐出现了进程交换/CEF等多种方式,通过数据总线将多个处理器连接起来:

这些做法和早期的NVLINK 1.0 / NVLINK 2.0类似,例如Pascal那一代也是采用这种芯片间直接总线互联的方式。

2.2 交换矩阵出现

1995年的时候,Nick Mckeown在论文"Fast Switched Backplan for a Gigabit Switched Router"中提出使用CrossBar交换机构成一个背板来支撑更高规模的Gigabit级的路由器,即后来的Cisco 12000系列高端路由器。

这些交换背板和当下的NVSwitch以及NVSwitch Tray构建的NVL8~NVL72的系统背后的原理是完全一致的。都是在单颗芯片遇到内存墙后,通过多个芯片互联构建一个更大规模的系统。

Cisco12000的单机柜构造,中间是Switch Fabric和GB200机柜中间的9个Switch Tray类似,而顶部和底部都有8个业务线卡(LineCard)插槽,对应于GB200的每个Compute Tray。

而这里面相对核心的技术是VOQ和iSLIP调度算法的设计,等价来说,当模型执行All-to-All时,有可能会多个B200同时向一个B200写入数据,因此会产生一定的头阻(Head-Of-Line Blocking,HOLB),聪明的人类总会在十字路口前后加宽一点作为缓冲,也就是所谓的Input Queue和Output Queue:

可惜问题又来了,对于Output Queue而言, 虽然可以最大限度的使用带宽, 但需要队列缓存具有N * R的操作速度.  而对于Input Queue, 缓存可以用R的速度进行处理, 但是会遇到HOL Blocking的问题.  在一个IQ交换机上受制于HOL Blocking的crossbar最大吞吐量计算可得为 58.6%。

解决IQ HOL Blocking问题的一种简单方案是使用虚拟输出排队(virtual output queueing , VOQ).在这种结构下,每个输入端口为每个输出设置一个队列,从而消除了HOL Blocking. 并保持缓存的操作速度为R。

当然英伟达在NVLINK上采用了Credit based的设计方案,Credit的分发仲裁等都是国内一些做GPU创业的公司值得深入研究的问题。

2.3 MultiStage多级架构和光互联演进

而NVL576更像是思科在2003年推出的Carrier Routing System(CRS-1)。

当时也是面对互联网泡沫时期对带宽的巨大需求,构建了多级交换网络的系统。

单个机柜3-stage的交换网络构建的Switch Tray,等同于当前的Non-Scalable的GB200 NVL72。而多机柜的结构则是对应于NVL576,当年思科也是将单机柜16个Linecard可以扩展到采用8个Fabric机柜+72个LineCard机柜来构建1152个LineCard的大规模集群,当年思科的内部连接也是采用光互联。

机箱之间的光连接器如下图所示:

需要注意的是这个时间点还有一个人,那就是现在英伟达的首席科学家Bill Dally,他创建了Avici公司通过3D-Torus互联来构建Tbit级路由器。

3D-Torus的互联是不是又想到了Google的TPU?而后来华为也OEM了Avici这套系统并标记为NE5000售卖,再后来才是自己研发的核心路由器产品NE5000E。而同一个时代,Juniper的诞生也在核心路由器这个领域给思科带来很多压力。或许英伟达一家独大的日子接下来会引来更多的挑战者。

另一方,MEMS的光交换机也是在那个年代引入的,和如今Google利用光交换机似乎也有一些似曾相识的感觉。

03

英伟达未来的演进

2023 年互联系统的大会HOTI上,Bil Dally做了一个Keynote: Accelerator Clusters,The New Suppercomputer[2]从片上网络和互联系统的角度来谈主要就是三大块内容:

  • Topolgy:CLOS/3D-Torus/Dragonfly

  • Routing

  • Flow control

不同的器件连接有不同的带宽和功耗:

问题是如何有机地将它们组合起来,需要考虑功耗/成本/密度和连接距离等多个因素。

3.1 光互联

通过这些维度的度量,Co-Package Optic DWDM成为一种选择:

构建光互联的系统概念图如下:

最终构建一个超大规模的光互联系统。

这一点上你会看到和思科当年做的CRS-1多机框系统几乎完全一致,GPU Rack等同于Cisco LineCard Chassis, Switch Rack等同于思科的Fabric Chassis,并且都是光互联,同时也使用了DWDM技术来降低连接复杂度并提升带宽。

芯片架构上则采用了Optical Engine作为chiplet进行互联。

而互联结构上则是更多的想去采用DragonFly拓扑并利用OCS光交换机。

至于FlowControl这些拥塞控制算法上,Bill在谈论一些类似于HOMA/NDP的机制,还有Adaptive Routing等。事实上并不用这么复杂,因为我们有更好的MultiPath CC算法,甚至不需要任何新的交换机特性支持。

3.2 算法和特殊硬件结合

另一方面来看,Transformer已经出来7年了,当然它是一个非常优秀的算法,既占满了算力有Compute Bound的算子,又有Memory Bound的算子,而整个工业界是否还有更精妙的算法呢?

在《大模型时代的数学基础(4)》中我们介绍了一些算法,例如稀疏Attention的Monarch Mixer以及不需要Attention机制的Mamba/RMKV等模型,当然还有很多人正在研究的基于范畴论/代数几何/代数拓扑等算法下的优化。当然还有不同精度的数值格式,例如Blackwell开始支持的FP4/FP6格式,以及未来可能支持的Log8格式。

其实历史上思科也是依靠算法和特殊硬件来逐渐提高单芯片的算力摆脱复杂互联结构的。当时通过TreeBitMap这些路由查表算法在普通的DRAM上就可以支持大规模的路由查询。

同时借助于多核和片上网络等技术的发展,构建了超高性能的SPP/QFP/QFA网络处理器,而这些技术又辗转着在AWS Nitro/ Nvidia BlueField / Intel IPU等DPU处理器上再次出现。

算法/算力和硬件的反复迭代才是时代发展的脉搏。

04

结论

本文分析了最新的Blackwell这一代GPU的互联架构,并且针对《英伟达的思科时刻》对于两次科技浪潮中,两家公司面临单芯片算力跟不上爆发性需求后进行的分布式系统构建和互联架构的探索,并分析了英伟达首席科学家Bill Dally在2023 Hoti的演讲,基本上能够看清楚英伟达未来的发展路径了。

但是我们同时也注意到,思科在互联网泡沫的高峰时期,也诞生了Juniper/Avici这样的公司,英伟达也是在那个年代作为挑战者战胜了3Dfx,后来又在专业领域战胜了SGI。任何一个时代都值得期待,而赢下来的不是单纯的堆料扩展,而是算法和算力结合硬件的创新。

从挑战者来看,算力核本身抛开CUDA生态,其实难度并不大。最近Jim Keller和日韩一些HBM玩家动作频频,是否BUDA+RISC-V+HBM会成为一个新兴的力量。

从互联系统替代IB/NVLINK来看,以太网已经有了51.2Tbps的交换芯片,基于以太网高速连接HBM的通信协议,并且支持SHARP这些随路计算在网计算的东西早在三年前NetDAM就设计好了。

参考资料:

How to Build Low-cost Networks for Large Language Models (without Sacrificing Performance)?:https://arxiv.org/abs/2307.12169

HOTI 2023: Bill Dally Keynote: Accelerator Clusters:https://www.youtube.com/watch?v=napEsaJ5hMU

本文转载自zartbot,作者:扎波特的橡皮擦

 线下交流 

 专业社群 

 精品活动推荐 

更多文章

不要错过哦,这可能是汽车网络安全产业最大的专属社区!

关于涉嫌仿冒AutoSec会议品牌的律师声明

一文带你了解智能汽车车载网络通信安全架构

网络安全:TARA方法、工具与案例

汽车数据安全合规重点分析

浅析汽车芯片信息安全之安全启动

域集中式架构的汽车车载通信安全方案探究

系统安全架构之车辆网络安全架构

车联网中的隐私保护问题

智能网联汽车网络安全技术研究

AUTOSAR 信息安全框架和关键技术分析

AUTOSAR 信息安全机制有哪些?

信息安全的底层机制

汽车网络安全

Autosar硬件安全模块HSM的使用

首发!小米雷军两会上就汽车数据安全问题建言:关于构建完善汽车数据安全管理体系的建议

谈思实验室 深入专注智能汽车网络安全与数据安全技术,专属汽车网络安全圈的头部学习交流平台和社区。平台定期会通过线上线下等形式进行一手干货内容输出,并依托丰富产业及专家资源,深化上下游供需对接,逐步壮大我国汽车安全文化及产业生态圈。
评论 (0)
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,凭借AS1163独立智能驱动器(SAID)成为中国领先的智能集成系统产品汽车制造商宁波福尔达智能科技股份有限公司(“福尔达”)环境动态照明应用的关键供应商。此次合作标志着汽车技术发展的一个重要时刻,充分展现了AS1163在优化动态照明应用系统成本方面的多功能性和先进性能。该产品支持传感器集成,拥有专为车顶照明设计的超薄外形,并能提升车内照明系统的性能。AS1163是一款先进的智能LED驱动器,能够与开放系统协议(OSP)网络无缝
    艾迈斯欧司朗 2025-03-20 14:26 42浏览
  • 近日,保定飞凌嵌入式技术有限公司(以下简称“飞凌嵌入式”)携手瑞芯微电子股份有限公司(以下简称“瑞芯微”)正式加入2025年全国大学生嵌入式芯片与系统设计竞赛(以下简称“嵌入式大赛”),并在应用赛道中设立专属赛题。本次嵌入式大赛,双方选用基于瑞芯微RK3588芯片设计的ELF 2开发板作为参赛平台,旨在通过此次合作,促进产教融合,共同推动嵌入式系统创新人才的培养。全国大学生嵌入式芯片与系统设计竞赛是一项A类电子设计竞赛,同时也是被教育部列入白名单的赛事,由中国电子学会主办,是学生保研、求职的公认
    飞凌嵌入式 2025-03-20 11:53 45浏览
  • 如同任何对我们工作方式的改变,新的工作方式必然会遇到许多必须面对的挑战。如果不解决组织在实施精益六西格玛过程中面临的障碍以及如何克服它们的问题,那么关于精益六西格玛的讨论就不算完整。以下列举了组织在成功实施精益六西格玛时常见的几个障碍,以及克服它们的方法:1)对精益六西格玛方法论缺乏理解。抵触情绪通常源于对精益六西格玛方法论的不了解,以及不相信它能真正发挥作用。这种情况在所有层级的人员中都会出现,包括管理层。虽然教育培训可以帮助改善这一问题,但成功的项目往往是打消疑虑的最佳方式。归根结底,这是一
    优思学院 2025-03-20 12:35 60浏览
  • 流感季急诊室外彻夜排起的长队,手机屏幕里不断闪烁的重症数据,深夜此起彼伏的剧烈咳嗽声——当病毒以更狡猾的姿态席卷全球,守护健康的战争早已从医院前移到每个人的身上。在医学界公认的「72小时黄金预警期」里,可穿戴设备闪烁的光芒正穿透皮肤组织,持续捕捉血氧浓度、心率变异性和体温波动数据。这不是科幻电影的末日警报,而是光电传感器发出的生命预警,当体温监测精度精确到±0.0℃,当动态血氧检测突破运动伪影干扰……科技正在重新定义健康监护的时空边界。从智能手表到耳机,再到智能戒指和智能衣物,这些小巧的设备通过
    艾迈斯欧司朗 2025-03-20 15:45 75浏览
  •         在当今电子设备高度集成的时代,电路保护显得尤为重要。TVS管(瞬态电压抑制二极管)和压敏电阻作为一种高效的电路保护器件,被广泛应用于各种电子设备中,用以吸收突波,抑制瞬态过电压,从而保护后续电路免受损坏。而箝位电压,作为TVS管和压敏电阻的核心参数之一,直接关系到其保护性能的优劣。箝位电压的定义        箝位电压指瞬态保护器件(如TVS二极管、压敏电阻)在遭遇过压时,将电路电压限制在安全范围内的
    广电计量 2025-03-20 14:05 45浏览
  • PCIe 5.0应用环境逐步成形,潜在风险却蠢蠢欲动?随着人工智能、云端运算蓬勃发展,系统对于高速数据传输的需求不断上升,PCI Express(PCIe)成为服务器应用最广的传输技术,尤其在高效能运算HPC(High Performance Computing)及AI服务器几乎皆导入了最新的PCIe 5.0规格,使得数据传输的双向吞吐量达到了128GB/s,让这两类的服务器能够发挥最大的效能。不过随着PCIe 5.0的频率达到16GHz,PCB板因为高频而导致讯号衰减加剧的特性,使得厂商面临很
    百佳泰测试实验室 2025-03-20 13:47 51浏览
  • 故障现象 一辆2024款路虎发现运动版车,搭载2.0 L发动机,累计行驶里程约为5 000 km。车主反映,使用遥控器无法解锁车门,随后使用机械钥匙打开车门,踩下制动踏板,按压起动按钮,仪表盘提示“将智能钥匙放在图示位置,然后按下起动按钮”(图1)。 图1 故障车的仪表盘提示采用上述应急起动方法,发动机能够起动着机。上述故障现象已出现过多次,过一段时间又会恢复正常,这次故障出现要求将车辆拖入店内进行彻底检修。 故障诊断 车辆进店后进行试车,车辆一切功能又恢复正常。经过反复测试
    虹科Pico汽车示波器 2025-03-20 10:17 46浏览
  • 贞光科技代理的品牌-光颉科技高精密薄膜电阻凭借0.01%的超高精度,在AI服务器电源模块中实现了精确电压分配、优化功率因数和减少热损耗,显著提升系统能效和可靠性。在当今的数字时代,人工智能(AI)服务器已成为数据中心的核心。随着AI应用的激增,服务器的性能和能效需求也在不断提高。电源模块作为服务器的关键组件,其性能直接影响整个系统的效率和可靠性。本文将探讨光颉科技高精密薄膜电阻,特别是其0.01%的精度,如何在AI服务器电源模块中提升能效。电源模块在AI服务器中的重要性电源模块负责将输入电源转换
    贞光科技 2025-03-20 16:55 62浏览
  • 本文内容来自微信公众号【工程师进阶笔记】,以工程师的第一视角分析了飞凌嵌入式OK3506J-S开发板的产品优势,感谢原作者温老师的专业分享。前两周,有一位老朋友联系我,他想找人开发一款数据采集器,用来采集工业现场的设备数据,并且可以根据不同的业务场景,通过不同的接口把这些数据分发出去。我把他提的需求总结了一下,这款产品方案大概有以下功能接口,妥妥地一款工业网关,在网上也能找到很多类似的产品方案,为啥他不直接买来用?再跟朋友深入地聊了一下,他之所以联系我,是因为看到我在公众号介绍过一款由飞凌嵌入式
    飞凌嵌入式 2025-03-20 11:51 69浏览
  • 为有效降低人为疏失导致交通事故发生的发生率,各大汽车制造厂及系统厂近年来持续开发「先进驾驶辅助系统」ADAS, Advanced Driver Assistance Systems。在众多车辆安全辅助系统之中,「紧急刹车辅助系统」功能(AEB, Autonomous Emergency Braking)对于行车安全性的提升便有着相当大的帮助。AEB透过镜头影像模块与毫米波雷达感测前方目标,可在发生碰撞前警示或自动刹车以降低车辆损伤以及乘员伤害。面临的挑战以本次分享的客户个案为例,该车厂客户预计在
    百佳泰测试实验室 2025-03-20 15:07 52浏览
  • 家电“以旧换新”政策的覆盖范围已从传统的八大类家电(冰箱、洗衣机、电视、空调、电脑、热水器、家用灶具、吸油烟机)扩展至各地根据本地特色和需求定制的“8+N”新品类。这一政策的补贴再叠加各大电商平台的优惠,家电销售规模显著增长,消费潜力得到进一步释放。晶尊微方案为升级换代的智能家电提供了高效且稳定的触摸感应和水位检测功能,使得操作更加便捷和可靠!主要体现在:水位检测1健康家电:养生壶、温奶器、加湿器的缺水保护安全2清洁电器:洗地机、扫地机器人的低液位和溢液提醒3宠物家电:宠物饮水机的缺水提醒/满水
    ICMAN 2025-03-20 15:23 64浏览
  • 在电子制造领域,PCB(印刷电路板)的使用寿命直接决定了产品的长期稳定性和可靠性。捷多邦作为全球领先的PCB制造商,始终将质量放在首位,致力于为客户提供高可靠性、高性能的PCB解决方案。以下是捷多邦如何确保PCB使用寿命超过20年的核心技术与优势。 1. ​高品质原材料:从源头保障耐用性捷多邦采用国际认证的优质基材,如FR4、高频材料和高TG板材,确保PCB在高温、高湿等极端环境下的稳定性。通过严格的原材料筛选和入库检验,捷多邦从源头控制质量,避免因材料缺陷导致的失效问题。 
    捷多邦 2025-03-20 11:22 84浏览
  • 4月8-11日,第91届中国国际医疗器械博览会(CMEF)将在国家会展中心(上海)举办。这场全球瞩目的医疗科技盛宴以“创新科技,智领未来”为主题,旨在全方位展示医疗科技的最新成果,与来自全球的行业同仁一道,为全球医疗健康领域带来一场科技与商贸交融的产业“盛宴”。飞凌嵌入式作为专业的嵌入式技术解决方案提供商,一直致力于为医疗器械行业提供丰富的、高可靠性的嵌入式硬件主控解决方案。届时,飞凌嵌入式将为来自全球的观众带来适用于IVD、医疗影像、生命体征监测等医疗设备的嵌入式板卡、显控一体屏产品以及多款动
    飞凌嵌入式 2025-03-20 11:46 31浏览
我要评论
0
9
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦