全面升级!安森美第二代1200VSiCMOSFET关键特性解析

原创 安森美 2024-03-25 19:01

点击蓝字 关注我们


安森美(onsemi)发布了第二代1200V碳化硅 (SiC) MOSFET,命名为M3S,其中S代表开关。M3S 系列专注于提高开关性能,相比于第一代1200V碳化硅MOSFET,除了降低特定电阻RSP (即RDS(ON)*Area) ,还针对工业电源系统中的高功率应用进行了优化,如太阳能逆变器、ESS、UPS 和电动汽车充电桩等。帮助开发者提高开关频率和系统效率。本应用笔记将描述M3S的一些关键特性与第一代相比的显著性能提升,以及一些实用设计技巧。本文为第一部分,将重点介绍M3S的一些关键特性以及与第一代相比的显著性能提升。

碳化硅功率器件在提高效率或增加功率密度方面不断迭代,大量应用在能源基础设施领域,包括太阳能、UPS、储能和电动汽车充电系统等。较低的开关损耗能够实现更高的效率,减少散热,并提高开关频率,缩小无源元件尺寸。这些优势足以证明碳化硅功率器件较高的成本是物有所值。


安森美已经发布了第一代1200V碳化硅MOSFET产品,命名为SC1,如表1所示,产品线覆盖20mΩ到160mΩ。尽管与工业电源系统1200V开关中的传统解决方案IGBT相比,SC1的性能实现了大幅提升,但它针对的是通用领域,设计参数折中,没有特别针对某个领域。一些工程师在产品设计时,希望选择更针对他们应用领域的特定产品。


安森美第二代1200V碳化硅MOSFET分为两种核心技术,一种是T设计,另一种是S设计。T设计主要针对逆变器,因此需要更低的RDS(ON)和更好的短路能力,而不是更快的开关速度。S设计对高开关性能进行了优化,因此设计具有较低的QG(TOT) 和较高的di/dt和dv/dt,从而降低开关损耗。M3S产品分为13/22/30/40/70mΩ,适配TO247−3L/4L和D2PAK−7L分立封装。


表1. 分立封装中的1200V碳化硅MOSFET(工业级为'T',车规级为'V',AEC−Q101)




M3S(第二代)对比SC1(第一代)的主要特征


本节介绍与第一代(NTH4L020N120SC1、1200 V/20 m、TO247−4L)相比,第二代(NTH4L022N120M3S、1200 V/22 m、TO247−4L)的主要特性。测试使用标准样品在同一试验台下,使用相同参数进行的。


RDS(ON),温度系数

导通电阻RDS(ON)是系统性能的关键参数。RDS(ON)越低,导通损耗就越低。而且温度系数也很重要,因为器件在运行后会发热,系统中的实际导通损耗是指高温下的RDS(ON)


MOSFET的RDS(ON)主要由三个部分组成:沟道电阻、JFET区电阻和漂移区电阻。沟道电阻具有负温度系数(NTC),其他电阻具有正温度系数(PTC)。RDS(ON)的整体温度系数特性由这些电阻的组成决定并主导。


在图1中,NTH4L020N120SC1的RDS(ON)在150°C时比在室温约25°C时增加了31%,而 NTH4L022N120M3S在相同条件下增加了74%。该结果表明SC1在同样条件下很大程度上受沟道电阻影响。当系统负载变重时,高温下的增加越少,导通损耗就越低。仅就导通损耗而言,SC1可能优于M3S。然而,由于在高开关频率下运行的应用中,导通在损耗中的比例相对较低,所以在应用中这并不占优势。事实上,受沟道电阻的影响,与第二代相比,SC1需要更高的正栅极偏置(VGS)才能完全导通,这就需要在驱动电路上进行额外的设计。因此,M3S更适合快速的开关应用。


图 1. 归一化 RDS(ON)与温度的关系


VGS(TH),温度依赖性

阈值电压 VGS(TH)是使源极和漏极之间形成沟道的最小栅极偏置。具有负温度系数。在相同的技术下,具有较低VGS(TH)也会具有较低的RSP,但降低VGS(TH)存在障碍。较低的VGS(TH)抗噪性较差,会通过米勒电容产生的dv/dt引起电流尖峰,通过共源电感上的di/dt引起电压尖峰,导致寄生电感和电容之间的谐振。这会使电路和PCB布局设计变得复杂。


在图2中,M3S显示出与SC1相同的VGS(TH)温度依赖趋势,并在与标准样本的实际测量中,高温下的VGS(TH)略高,尽管数据手册中的典型VGS(TH)分别为2.72V和2.70V,但这表明M3S即使在VGS(TH)相似的水平下也实现了更好的RSP性能。NTH4L022N120M3S在数据手册中的最小值VGS(TH)高0.2V,2.04V对比1.8V,可以降低噪声干扰。


图 2. 阈值电压与温度的关系


VGS(OP),推荐工作栅极电压

推荐的工作栅极驱动电压,是通过考虑性能(如 RDS(ON)、开关损耗(EON、EOFF)、体二极管的正向压降(VF)及其反向恢复损耗(EREC))和可靠性,特别是栅极氧化层质量来确定的。


如表2所示,M3S推荐使用-3V作为负栅极偏置供电电压,18V作为正栅极偏置,而 SC1对应的电压为-5V/20V。SC1需要更高电压的原因是对通道的控制不如M3S。较高的VGS(OP)也需要在VGS中有更高的最大额定值,以保证足够的设计余量,从而导致栅极氧化层厚度增加,降低了通道迁移率和跨导,减慢了开关速度。


此VGS(OP)是推荐值,并非唯一可用的值。可以在最大VGS 范围内根据每个系统的要求进行选择。适当的VGS(OP)选择在“如何选择合适的VGS(OP)”部分中进行详细描述。


表 2. 1200V碳化硅MOSFET的栅源电压


QG(TOT),总栅极电荷

总栅极电荷指MOSFET导通或关断瞬态过程中所需的电荷量。电荷量是电流乘以时间(Q=I*t)。这意味着更高的QG(TOT)需要在相同时间内提供更高的栅极驱动电流,或者在相同栅极电流下需要更长的时间来进行栅极驱动,这需要栅极驱动电路具有更高的驱动能力。


给定条件下,NTH4L022N120M3S的电荷量为135nC,并且RDS(ON)*QG(TOT)的FOM(Figure of Merit,品质因数)因子比NTH4L020N120SC1降低了44%,这意味着在相同的RDS(ON)器件中,只需要56%的栅极电荷进行开关。由于这一特性,可以减轻栅极驱动的负担,对栅极驱动器的灌电流和拉电流能力要求更低,更便于并联操作。


图 3. 总栅极电荷


EOSS,在COSS中存储能量

MOSFET在节点间必然存在寄生电容,栅极和源极之间的CGS、栅极和漏极之间的CGD、漏极和源极之间的CDS。在瞬态响应期间,这些电容需要充电和放电,这限制了电压斜率dv/dt。较大的输出电容(COSS=CGD+CDS)需要更长的时间和更大的能量来进行充电和放电。在硬开关场景中,如果再次放电时没有回收到其他存储组件中,COSS中充电后存储的能量将通过MOSFET的通道或其他寄生电阻耗散。EOSS的损耗包含在器件的开关损耗中,与高电流下的开关损耗相比,这种电容性损耗在低电流下看起来并不大,比如系统轻负载场景。由于EOSS取决于漏源电压,而不是电流,因此成为轻负载时效率的关键损耗。更大的EOSS 对磁化电感的选择要求更高,会使软开关应用的设计变得困难。


图4显示M3S的EOSS要低得多。在RDS(ON)*EOSS的品质因数图中,M3S比SC1减少了44%,因此能在系统轻负载时提供更高的效率,并便于变压器和电感部分的设计。


图 4. EOSS,COSS 中的储存能量


外部碳化硅SBD的电感硬开关特性

导通和开关损耗(EON、EOFF)是系统效率中的非常关键的参数。特别是对于高开关频率拓扑的应用,要实现高效率,那么降低开关损耗比降低导通损耗更重要。更好的开关性能可以提高开关频率,有助于减小电感器、变压器和电容器等能量存储元件的尺寸,从而减小系统的体积。


开关损耗可以在双脉冲测试电路中测量。基本开关波形如图5(a)所示。损耗的开关周期定义为:EON从栅极增加的10%到VDS=0V,EOFF从栅极下降的90%到ID=0A。开关条件为 VDS=800V,VGS=−3V/18V,RG=4.7Ω,25°C。续流二极管用作碳化硅SBD(肖特基势垒二极管),型号为FFSH30120A,对EON没有反向恢复电荷影响,只有电容损耗影响EON。产品封装为TO247-4L,提供开尔文源极连接,消除了栅极驱动回路中共源寄生电感的影响。门极驱动IC采用14A灌电流和拉电流能力,预留空间足够大,因此开关不受门极驱动的限制。双脉冲测试电路的寄生回路电感从直流链路正极(+)到地测量值为30nH。


图5(b)显示在给定条件下,NTH4L022N120M3S实现了开关性能的大幅提升,EOFF降低了40%,EON降低了20-30%,总开关损耗比NTH4L020N120SC1降低了34%。在高开关频率的应用中,将消除在“RDS(ON)温度系数”部分中描述的较高RDS(ON)温度系数的缺点。M3S在这类应用中进行了一系列优化。


由于电容不是独立于温度的,并且碳化硅SBD只有电容损耗,随着温度的升高,开关损耗不会显著增加,但可能会因测量误差,外部电阻器和驱动芯片等发热引起的第三方因素而增加几个百分点。


(a)理论电感开关波形

(b)@ VDS = 800 V, VGS = -3 V/18 V, RG = 4.7 Ω, 25°C, Lσ = 30 nH 时的电感开关损耗与漏电流

图 5. 电感开关损耗


体二极管特性

安森美碳化硅MOSFET也具有与硅MOSFET类似的pn结本征双极体二极管。由于材料的宽带隙特性,碳化硅MOSFET的正向电压相对高于硅MOSFET,因为pn结的内置电压更高。一般来说,IGBT芯片在封装内有一个额外的独立二极管,称为共封装或反并联,IGBT是单向器件,除非它是反向导通IGBT技术。因此,IGBT在共封装二极管的选择上有更多的选择,如低VF 二极管、快速恢复二极管或碳化硅SBD。无论是体二极管还是共封装二极管,都需要用于从相反的直流输入连接旁路反向电压,或在软开关应用中用于ZVS,或在桥式拓扑中的硬开关中作为续流二极管,这需要更快的反向恢复以提高系统效率。


图6显示了推荐的-3V负偏置下的漏电流的正向电压特性,称为第三象限特性。与硅 PIN二极管约1.5~3V和碳化硅SBD约1.5V相比,NTH4L020N120SC1在40A和25°C时的VF相对较高,为3.8V,NTH4L022N120M3S为4.5V。对于二极管导通损耗至关重要的情况下,需要采用正栅偏压如18V的SR(同步整流器)模式操作,这是降低导通损耗的最有效方法,通过反向导通电流从源极到漏极,其中压降随RDS(ON) 变化而变化。否则,将需要额外的二极管实现。


图 6. 体二极管正向电压


与大多数载流子器件如碳化硅肖特基势垒二极管不同,碳化硅MOSFET的体二极管通过PIN二极管结构中的少数载流子注入而具有反向恢复电荷(QRR),注入到轻掺杂漂移区的少数载流子需要时间释放,称为反向恢复时间(tRR)。在释放电荷期间,二极管会消耗损耗,称为反向恢复损耗(EREC)。由于注入的少数载流子更多,复合寿命更长,随着温度的升高会增加。图7显示NTH4L022N120M3S比NTH4L020N120SC1具有更快的恢复时间和更低的恢复电荷,提高了约40%~50%。即使在VF较高的情况下,M3S由于具备卓越的反向恢复特性,在体二极管与有源开关换向的桥式拓扑中也能提供更好的性能,特别是对于高频应用。


图 7. 体二极管的反向恢复


自体二极管的导通开关性能,EON(BD)

在桥式拓扑中,体二极管与有源开关换向。在反向恢复期间,电桥短路并产生直通电流Ipeak如图 5 (b) 所示,这使得EON变大。较高的QRR和较长的tRR会导致较高的Ipeak,从而导致电桥拓扑中的EON较高。


图8是在同一双脉冲测试台上,在指定条件下,自体二极管的导通开关损耗 (EON(BD))的结果。NTH4L022N120M3S的EON(BD)比NTH4L020N120SC1低45%。这个值碳化硅SBD增加了30%,这意味着QRR对EON损耗的影响。


从VF、QRR和EON(BD)的结果可以看出,M3S的体二极管是针对高频应用设计的,并且随着开关频率的增加而更具优势。


图 8. 体二极管的导通开关损耗 @VDD = 800 V,VGS = −3 / 18 V,RG = 4.7,Lσ = 30 nH



⭐点个星标,茫茫人海也能一眼看到我⭐

「 点赞、在看,记得两连~ 」

安森美 安森美(onsemi, 纳斯达克股票代码:ON)专注于汽车和工业终端市场,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。以高度差异化的创新产品组合,创造智能电源和感知技术,解决最复杂的挑战,帮助建设更美好的未来。
评论 (0)
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 98浏览
  • 你还记得,那些年疯狂追捧的淘宝网红店吗?它们曾是时尚的风向标,是很多人购物车里的常客,承载着无数年轻人的创业梦想。然而,最近这股网红店闭店潮,却如同一记重锤,敲醒了所有人。 从初代网红张大奕关闭“吾欢喜的衣橱”,到周扬青告别“GRACE CHOW”,再到拥有 190 万社交平台粉丝的“李大米 Lidami”宣布关闭淘宝店铺,以及“Ff5 official”“MAKI STUDIO”等大批网红店纷纷发出闭店通告,曾经风光无限的淘宝网红店,正在以惊人的速度消失。这一波闭店潮,涉及的店铺数量
    用户1742991715177 2025-03-27 23:22 66浏览
  • 文/杜杰编辑/cc孙聪颖‍3月11日,美国总统特朗普,将自费8万美元购买的特斯拉Model S,开进了白宫。特朗普此举,绝非偶然随性,而是有着鲜明的主观意图,处处彰显出一种刻意托举的姿态 。特朗普也毫不讳言,希望他的购买能推动特斯拉的发展。作为全球电动车鼻祖,特斯拉曾凭借创新理念与先进技术,开辟电动汽车新时代,引领行业发展潮流。然而当下,这家行业先驱正深陷困境,面临着前所未有的挑战。就连“钢铁侠”马斯克自己都在采访时表示“非常困难”,的确是需要美国总统伸手拉一把了。马斯克踏入白宫的那一刻,特斯拉
    华尔街科技眼 2025-03-28 20:44 173浏览
  • 语音芯片在播放音频时出现电流声是嵌入式音频系统开发中的常见问题,直接影响用户体验。唯创电子WT系列语音芯片在智能家居、工业控制等领域广泛应用,本文将从PWM直推输出与DAC+功放输出两类典型电路架构出发,系统化分析电流声成因并提供工程级解决方案。一、PWM直推输出电路电流声诊断1.1 现象特征高频"滋滋"声(8kHz-20kHz)声音随系统负载变化波动静音状态下仍存在底噪1.2 核心成因分析(1) 电源干扰开关电源纹波超标:实测案例显示,当12V转3.3V的DC-DC电源纹波>80mVpp时,P
    广州唯创电子 2025-03-28 08:47 111浏览
  • 在智能家居领域,无线门铃正朝着高集成度、低功耗、强抗干扰的方向发展。 WTN6040F 和 WT588F02B 两款语音芯片,凭借其 内置EV1527编解码协议 和 免MCU设计 的独特优势,为无线门铃开发提供了革命性解决方案。本文将深入解析这两款芯片的技术特性、应用场景及落地价值。一、无线门铃市场痛点与芯片方案优势1.1 行业核心痛点系统复杂:传统方案需MCU+射频模块+语音芯片组合,BOM成本高功耗瓶颈:待机电流
    广州唯创电子 2025-03-31 09:06 66浏览
  • 本文介绍瑞芯微RK356X系列复用接口配置的方法,基于触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。复用接口介绍由下图可知,红圈内容当前引脚可配置为SPI0或者PWM0功能。由标准系统固件以及相关系统手册可得,当前接口默认配置为SPI0功能:console:/ # ls dev/spidev0.0dev/spidev0.0再由原理图可知当前GPIO为GPIO0_C3
    Industio_触觉智能 2025-03-28 18:14 151浏览
  •        随着智能驾驶向L3级及以上迈进,系统对实时性的要求已逼近极限。例如,自动紧急制动(AEB)需在50毫秒内完成感知、决策到执行的全链路响应,多传感器数据同步误差需小于10微秒。然而,传统基于Linux-RT的方案在混合任务处理中存在天然缺陷——其最大中断延迟高达200微秒,且多任务并发时易引发优先级反转问题。据《2024年智能汽车电子架构白皮书》统计,超60%的车企因实时性不足被迫推迟舱驾一体化项目落地。为旌电子给出的破局之道,是采用R5F(实
    中科领创 2025-03-29 11:55 231浏览
  • 本文介绍OpenHarmony5.0 DevEco Studio开发工具安装与配置,鸿蒙北向开发入门必备!鸿蒙北向开发主要侧重于应用层的开发,如APP开发、用户界面设计等,更多地关注用户体验、应用性能优化、上层业务逻辑的实现,需要开发者具备基本的编程知识、对操作系统原理的简单理解,以及一定的UI设计感。由触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,支持开源鸿蒙OpenHarmony3.2至5.0系统,适合鸿蒙开发入门学习。下载与安装开发工具点下面链接下载:
    Industio_触觉智能 2025-03-28 18:16 197浏览
  • 在工业控制与数据采集领域,高精度的AD采集和实时显示至关重要。今天,我们就来基于瑞芯微RK3568J + FPGA国产平台深入探讨以下,它是如何实现该功能的。适用开发环境如下:Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:Ubuntu18.04.4 64bit、VMware15.5.5U-Boot:U-Boot-2017.09Kernel:Linux-4.19.232、Linux-RT-4.19.232LinuxSDK:LinuxSD
    Tronlong 2025-03-28 10:14 178浏览
  • 一、真空容器的定义与工作原理真空容器是一种能够创造并保持一定真空度的密闭容器。其工作原理通常涉及抽气系统,该系统能够逐渐抽出容器内部的气体分子,从而降低容器内的气压,形成真空环境。在这个过程中,容器的体积并不会因抽气而改变,但容器内的压力会随着气体的抽出而逐渐降低。二、真空容器并非恒压系统真空容器并非一个恒压系统。恒压系统指的是在外部环境变化时,系统内部压力能够保持相对稳定。然而,在真空容器中,随着气体的不断抽出,内部压力会持续降低,直至达到所需的真空度。因此,真空容器内部的压力是变化的,而非恒
    锦正茂科技 2025-03-29 10:23 142浏览
  • 真空容器的材料选择取决于其应用场景(如科研、工业、医疗)、真空等级(低真空、高真空、超高真空)以及环境条件(温度、压力、化学腐蚀等)。以下是常见材料及其优缺点分析:1. 不锈钢(如304、316L)优点:耐腐蚀性强:316L含钼,耐酸碱和高温氧化,适合高真空和腐蚀性环境。高强度:机械性能稳定,可承受高压差和外部冲击。低放气率:经电解抛光或镀镍处理后,表面放气率极低,适合超高真空系统(如粒子加速器、半导体镀膜设备)。易加工:可焊接、铸造,适合复杂结构设计。缺点:重量大:大型容器运输和安装成本高。磁
    锦正茂科技 2025-03-29 10:52 47浏览
  • 3月27日,长虹中玖闪光超高剂量率电子射线放射治疗系统(e-Flash)临床试验项目在四川大学华西医院正式启动,标志着该项目正式进入临床试验阶段。这不仅是我国医学技术领域的一项重大突破,更是我国在高端医疗设备研发和应用方面的重要里程碑。e-Flash放射治疗系统适用于哪些病症,治疗周期为多久?会不会产生副作用?治疗费用高不高……随着超高剂量率电子射线放射治疗系统(e-Flash)正式进入临床试验阶段,社会各界对该项目的实施情况尤为关注。对此,中国工程院院士范国滨,以及四川大学华西医院、四川省肿瘤
    华尔街科技眼 2025-03-28 20:26 295浏览
  • 真空容器内部并非wan全没有压强,而是压强极低,接近于零。真空状态下的压强与容器内外气体的分子数量、温度以及容器本身的性质有关。一、真空与压强的基本概念真空指的是一个空间内不存在物质或物质极少的状态,通常用于描述容器或系统中气体的稀薄程度。压强则是单位面积上所受正压力的大小,常用于描述气体、液体等流体对容器壁的作用力。二、真空状态下的压强特点在真空状态下,容器内部的气体分子数量极少,因此它们对容器壁的作用力也相应减小。这导致真空容器内部的压强远低于大气压强,甚至接近于零。然而,由于技术限制和物理
    锦正茂科技 2025-03-29 10:16 153浏览
  • 在智能语音设备开发中,高音量输出是许多场景的核心需求,例如安防警报、工业设备提示、户外广播等。 WT588F02BP-14S 和 WTN6040FP-14S 两款语音芯片,凭借其内置的 D类功放 和 3W大功率输出 能力,成为高音量场景的理想选择。本文将从 性能参数、应用场景、设计要点 三大维度,全面解析这两款芯片的选型策略。一、核心参数对比与选型决策参数WT588F02BP-14SWTN6040FP-14S输出功率3W@4Ω(THD<1%)3W@4Ω(THD<0.8%)功
    广州唯创电子 2025-03-28 09:15 114浏览
  • Shinco音响拆解 一年一次的面包板社区的拆解活动拉开帷幕了。板友们开始大显身手了,拆解各种闲置的宝贝。把各自的设计原理和拆解的感悟一一向电子爱好者展示。产品使用了什么方案,用了什么芯片,能否有更优的方案等等。不仅让拆解的人员了解和深入探索在其中。还可以让网友们学习电子方面的相关知识。今天我也向各位拆解一个产品--- Shinco音响(如下图)。 当产品连接上电脑的耳机孔和USB孔时,它会发出“开机,音频输入模式”的语音播报,。告诉用户它已经进入音响外放模式。3.5mm耳机扣接收电脑音频信号。
    zhusx123 2025-03-30 15:42 78浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦