锂电池模组膨胀位移分析方法!

锂电联盟会长 2024-03-25 11:52
点击左上角“锂电联盟会长”,即可关注!

动力电池在充放电过程中会产生膨胀。电池单体的膨胀会带动整个电池模组发生形变,影响模组外观,如果膨胀较大,壳体材料无法抵抗膨胀力,甚至可能造成安全问题。

目前很多研究者主要分析了膨胀力和预紧力对于电池寿命的影响,但是针对模组级别的膨胀位移的分析,并没有提出系统的方法。膨胀位移分析的缺失,如果预留膨胀空间过小,可能导致电池模组外轮廓超标,不满足客户要求;如果预留膨胀空间过大,可能导致电池模组的体积密度设计保守,没有竞争优势。

针对上述不足,本文提出了一种锂电池模组膨胀位移分析方法,结合DCC尺寸链分析软件和CAE仿真分析软件综合评估模组膨胀,最后通过实验验证模组的实际膨胀。

1 前期规划

膨胀分析的前期规划是按照模组功能设计要求,布局核心部件的尺寸。如表1所示,通过电性能和模组的空间布局,可以初步确定电芯的基本尺寸。通过化学体系结合之前的开发经验,可以初步确定电池从生命初期(BOL)空电-生命末期(EOL)满电的变形量。通过挤压、冲击、振动等机械性能测试要求,可以初步确定模组的壳体厚度。通过安全防护的功能要求,可以初步确定隔热材料的厚度。

经过初步的规划和布局,可以基本确定模组在宽度方向的主要部件,如图1所示。

通过图1可以看出,模组主要包含电芯、气凝胶、云母、壳体绝缘膜、壳体等部件。剩余间隙主要用来填充缓冲垫,通过压缩缓冲垫来调节电芯入壳时候的预紧力。然而,各个部件都有一定的尺寸公差,考虑尺寸公差的影响,对应求出来的剩余间隙也会有一定的差异。因此需要进行尺寸链分析,确定剩余间隙的范围。如图1所示,将核心部件拆解为不同的尺寸环,导入到 DCC 尺寸链分析软件中进行求解计算。软件自动生成方程组如下:

因为组成环个数大于3,采用概率法进行计算,软件计算出A0,如图2所示。

根据3s分布的准则,A0的尺寸为(7.14±0.54)mm,对应预留给缓冲垫的空间范围为[6.6 7.68]。确定缓冲垫压缩范围后,下一步是选择合适的缓冲垫厚度和缓冲垫类型,以确保缓冲垫吸收装配公差,压缩后反作用力的范围正好能落在电芯最佳循环预紧力的范围之内。另外缓冲垫的类型还需要确保后期电芯膨胀过程中能平稳且最大限度地吸收膨胀。基于此要求,选取了某款聚氨酯泡棉,其在压缩前期可以快速达到电芯预紧力的要求,压缩中期压力也是平缓地提升,压缩后期拐点来得较慢,且80%压缩量下压力未超过400kPa,确保泡棉可以最大限度吸收电芯的膨胀。泡棉曲线如图3所示。

选取缓冲泡棉初始厚度为8mm,结合预留给缓冲垫的压缩空间,可以计算出初始入壳时候,缓冲泡棉压缩的范围为4%~17.5%,结合图3的曲线,计算出的预紧力范围为16~24kPa,满足电芯输入的15~30kPa预紧力要求。

前期规划初步布局了整体结构,确保电芯入壳后满足最佳预紧力的要求,保证了模组的循环特性满足要求。

2 仿真计算

基于前期的布局和规划,采用了CATIA建立了模组的三维模型。其中泡棉按照原始厚度进行建模,电芯的厚度根据泡棉的厚度进行等分调整。确保仿真过程中,电芯膨胀到对应尺寸,泡棉的反馈力符合实际情况。仿真模型如图4所示。

按照图4的模型,通过Hypermesh划分网格,以电芯的厚度变化作为变量,采用ABQUAS进行仿真,计算出来EOL下壳体膨胀位移和强度是否满足要求。分析结果如图5、图6所示。

由图5可以看出,模组EOL状态下单边膨胀3.46mm,累计6.92mm,基本满足系统预留给模组10mm的膨胀空间。由图6可以看出,EOL状态下壳体应力主要集中在折弯区域,最大应力达到290MPa,未超过壳体抗拉强度。

另外,通过软件,导出了不同状态厚度的电芯变形量和壳体形变的关系数据,如图7所示。

通过图7可以对标出电芯厚度变化和壳体厚度增量的关系,结合不同荷电状态(SOC)和健康状态(SOH)下的电芯变形可以推断出模组变形,为相似的布局提供参考和借鉴。

通过仿真计算,完成了EOL下模组的膨胀力和膨胀位移的评估,结果表明模组的设计和布局满足系统级别膨胀的要求,同时壳体变形与电芯变形的关系也为相似项目提供了参考。

3 膨胀实验

为了测试模组的膨胀位移,搭建了综合测试平台。平台主要包含恒温测试箱、充放电测试仪、位移检测工装、实验模组等部件。实验模组选取和仿真分析一致的模组,将模组放置在特制的膨胀位移检测工装之中,模组的定位和系统之中的定位方式一致。

然后把工装放置在恒温测试箱中,设定温度45℃,接通充放电测试仪,采用1C/1C的充放电方式,进行模组加速老化循环测试,记录每100周模组的膨胀量,直至记录到模组循环到800周以后,系统层级认为模组达到了EOL状态。平台的整体布局如图8所示,测试结果如图9所示。

由图9可以看出,前200周,电池模组膨胀较快,后面膨胀放缓。初步分析是由于膨胀后期壳体反作用力较大,限制了电芯的膨胀趋势。到达800周后,模组总体膨胀达到了5.028mm,实际膨胀小于仿真的6.92mm。差异的来源是800周后模组电芯的实际SOH并未达到EOL状态下的SOH,因此还有继续充放电的能力,因此未达到最大膨胀。但是,按照系统要求已经满足EOL的测试要求。

膨胀实验验证了模组整体膨胀的趋势,对比仿真,实测的膨胀位移小于仿真估算的膨胀位移,满足系统测试的要求;另外也从侧面证明模组及电芯的性能优于理论性能。后续将进一步安排实验资源,将模组循环到实际EOL的状态,观察并记录最终的模组外壳的膨胀变形量。

4 结论
本文提出了一种系统的膨胀分析的方法,通过前期规划、仿真分析和实验测试得出如下结论:

(1)基于系统层级的设计要求,规划了模组宽度方向主要零件的尺寸,并基于 DCC 尺寸链分析软件,以概率法的分析思路评估剩余缓冲垫的安装空间。提出缓冲垫的选型方法,确保模组电芯安装预紧力。为初期模组膨胀设计和规划提供参考。

(2)完成了模组的膨胀分析,提出了优化模型,消除泡棉预紧力对仿真结果的影响。仿真结果表明EOL下最大应力为290MPa,满足壳体应力要求。最大膨胀位移6.92mm,未超过系统预留的膨胀边界。通过仿真数据绘制出的电芯形变和模组膨胀的关系曲线为相似结构的布局提供参考。

(3)搭建了膨胀位移测试平台,按照系统要求,达到800周循环,结果表明模组生命末期的膨胀位移为5.028mm,小于仿真分析的6.92mm,并分析了差异的原因是由于模组的实际性能优于理论性能。最终的膨胀位移满足系统边界的要求。

文献参考:李林阳,何帆,吕希祥.锂电池模组膨胀位移分析方法[J].电源技术,2023,47(5):632-634
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 在当今科技飞速发展的时代,工业电子作为现代制造业的中流砥柱,正以前所未有的速度推动着各个行业的变革与进步。从汽车制造到航空航天,从智能家居到工业自动化,工业电子的身影无处不在,为我们的生活和生产带来了巨大的改变。工业电子的崛起与发展工业电子的发展历程可谓是一部波澜壮阔的科技进化史。追溯到上世纪中叶,电子技术开始逐渐应用于工业领域,最初主要是简单的电子控制装置,用于提高生产过程的自动化程度。随着半导体技术、计算机技术和通信技术的不断突破,工业电子迎来了爆发式的增长。集成电路的发明使得电子设备的体积
    Jeffreyzhang123 2024-12-27 15:40 46浏览
  • 施密特触发器光耦施密特触发器光耦(Schmitt Trigger Optocoupler)是一种将光耦和施密特触发器电路相结合的电子元件。它不仅具备光耦的电气隔离功能,还具备施密特触发器的噪声抑制和信号整形能力。施密特触发器光耦的详细结构LED部分:LED是由半导体材料制成的,通常封装在一个透明的塑料或玻璃外壳中。其主要功能是在输入端电流流过时产生光信号。光接收器部分:光接收器通常是一个光敏晶体管或光敏二极管,其基区(或PN结)对光信号敏感。当接收到来自LED的光信号时,光接收器产生一个与光强度
    晶台光耦 2024-12-26 17:19 52浏览
  • 在科技飞速发展的今天,医疗电子作为一个融合了医学与电子技术的交叉领域,正以前所未有的速度改变着我们的医疗模式和健康生活。它宛如一颗璀璨的明珠,在医疗领域绽放出耀眼的光芒,为人类的健康福祉带来了诸多惊喜与变革。医疗电子的神奇应用医疗电子的应用范围极为广泛,深入到医疗的各个环节。在诊断方面,各种先进的医学成像设备堪称医生的 “火眼金睛”。X 光、CT、MRI 等成像技术,能够清晰地呈现人体内部的结构和病变情况,帮助医生准确地发现疾病。以 CT 为例,它通过对人体进行断层扫描,能够提供比传统 X 光更
    Jeffreyzhang123 2024-12-27 15:46 41浏览
  • 发明阶段(20世纪80年代至90年代)起源:当时ASIC设计成本高,周期长,流片失败率高,业界需要一种通用的半导体器件进行流片前测试和验证,可编程逻辑器件就此产生。诞生:1980年,Xilinx公司成立。1985年,Ross Freeman制造了第一片PFGA芯片XC2064,采用4输入,1输出的LUT和FF结合的基本逻辑单元。发展阶段(1992年至1999年)容量提升:FPGA容量不断上涨,芯片面积逐渐增大,为架构穿心提供空间,复杂功能可以实现。布线问题凸显:缩着芯片复杂度增加,片上资源的互连
    Jeffreyzhang123 2024-12-27 10:26 66浏览
  • 起源与基础20 世纪 60 年代:可编程逻辑设备(PLD)的概念出现,一种被称为 “重构能力” 的芯片的可编程性吸引了许多工程师和学者。20 世纪 70 年代:最早的可编程逻辑器件 PLD 诞生,其输出结构是可编程的逻辑宏单元,它的硬件结构设计可由软件完成,设计比纯硬件的数字电路更灵活,但结构简单,只能实现小规模电路。诞生与发展20 世纪 80 年代中期:为弥补 PLD 只能设计小规模电路的缺陷,复杂可编程逻辑器件 CPLD 被推出,它具有更复杂的结构,能够实现较大规模的电路设计。1988 年:
    Jeffreyzhang123 2024-12-27 10:41 60浏览
  • 图森未来的“夺权之争”拉扯了这么久,是该画上句号了。大约9年前,侯晓迪、陈默、郝佳男等人共同创立了图森未来,初衷是以L4级别的无人驾驶卡车技术为全球物流运输行业赋能。此后,先后获得了5轮融资,累计融资额超过6.5亿美元,并于2021年成功在美国纳斯达克上市,成为全球自动驾驶第一股。好景不长,2023年市场屡屡传出图森未来裁员、退市的消息。今年1月份,图森未来正式宣布退市,成为了全球首个主动退市的自动驾驶公司。上市匆匆退市也匆匆,其背后深层原因在于高层的频繁变动以及企业的转型调整。最近,图森未来的
    刘旷 2024-12-27 10:23 41浏览
  • 近日,紫光展锐正式推出基于RTOS系统的旗舰产品W337,它拥有丰富特性和超低功耗,进一步壮大紫光展锐的智能穿戴产品组合,面向中高端和广阔的智能穿戴市场,提供先进的技术解决方案。  性能卓越,成就强悍RTOS穿戴芯 双核CPU架构:紫光展锐W337基于RTOS系统首创双核CPU架构,可根据系统的负载情况动态调整功耗,当系统负载较低时,降低一个或两个核心的频率和电压。由于有两个核心分担负载,每个核心的发热相对较低,进一步降低了系统整体的散热需求。双核架构更好地实现了负
    紫光展锐 2024-12-26 18:13 57浏览
  • 随着科技的飞速进步,智能家电已成为现代家庭生活中密不可分的一部分。不论是自行出动,清扫地板的扫地机器人、还是可提前准备食材清单的智能冰箱,或者是可自动调节洗衣程序的智能洗衣烘干机,这些智能家电装置正以前所未有的方式改变着我们的日常生活。除了上述提到的智能家电,还有更多你想象得到的便利装置,例如智能除湿机、空气清净机、净水器、智能风扇、语音助理及智能灯具等等。这些装置不仅为现代人的居家生活中带来了许多便利,让我们能够更轻松地管理家务,还可进一步提升生活质量,节省宝贵的时间和能源。正所谓「科技始终来
    百佳泰测试实验室 2024-12-26 16:37 46浏览
  •       在科技日新月异的今天,智能手机已不再仅仅是通讯工具,它更成为了我们娱乐、学习、工作的核心设备。特别是在游戏体验方面,用户对于手机的性能要求愈发严苛,追求极致流畅与沉浸感。正是基于这样的市场需求,一加品牌于2024年12月26日正式推出了其最新的游戏性能旗舰——一加 Ace 5系列,包括一加 Ace 5与一加 Ace 5 Pro两款力作。这一系列深度聚焦于性能与游戏体验,旨在为用户带来前所未有的游戏盛宴。骁龙8系旗舰平台,性能跃升新高度
    科技财经汇 2024-12-26 22:31 66浏览
  • 今年AI技术的话题不断,随着相关应用服务的陆续推出,AI的趋势已经是一个明确的趋势及方向,这也连带使得AI服务器的出货量开始加速成长。AI服务器因为有着极高的运算效能,伴随而来的即是大量的热能产生,因此散热效能便成为一个格外重要的议题。其实不只AI服务器有着散热的问题,随着Intel及AMD 的CPU规格也不断地在提升,非AI应用的服务器的散热问题也是不容小觑的潜在问题。即便如此,由于目前的液冷技术仍有许多待克服的地方,例如像是建置成本昂贵,机壳、轨道、水路、数据中心等项目都得重新设计来过,维修
    百佳泰测试实验室 2024-12-26 16:33 101浏览
  • 在谐振器(无源晶振)S&A250B测试软件中,DLD1到DLD7主要用于分析晶体在不同驱动功率下的阻抗变化。此外,还有其他DLD参数用于反映晶振的磁滞现象,以及其频率和功率特性。这些参数可以帮助工程师全面了解KOAN晶振在不同功率条件下的动态特性,从而优化其应用和性能。磁滞现象晶振的磁滞现象(Hysteresis)是指在驱动功率变化时,晶体的阻抗或频率无法立即恢复至初始状态,而表现出滞后效应。1. DLDH: Hysteresis Ratio (MaxR/MinR)在不同驱动
    koan-xtal 2024-12-26 12:41 106浏览
  • 在科技飞速发展的今天,汽车不再仅仅是一种交通工具,更是一个融合了先进技术的移动智能空间。汽车电子作为汽车产业与电子技术深度融合的产物,正以前所未有的速度推动着汽车行业的变革,为我们带来更加智能、安全、舒适的出行体验。汽车电子的发展历程汽车电子的发展可以追溯到上世纪中叶。早期,汽车电子主要应用于发动机点火系统和简单的电子仪表,功能相对单一。随着半导体技术的不断进步,集成电路被广泛应用于汽车领域,使得汽车电子系统的性能得到了显著提升。从电子燃油喷射系统到防抱死制动系统(ABS),从安全气囊到车载导航
    Jeffreyzhang123 2024-12-27 11:53 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦