一文秒懂|Linux字符设备驱动

原创 嵌入式艺术 2023-11-30 08:45

一文秒懂|Linux字符设备驱动

image-20231123091238538

1、前言

众所周知,Linux内核主要包括三种驱动模型,字符设备驱动,块设备驱动以及网络设备驱动。

其中,Linux字符设备驱动,可以说是Linux驱动开发中最常见的一种驱动模型。

我们该系列文章,主要为了帮助大家快速入门Linux驱动开发,该篇主要来了解一些字符设备驱动的框架和机制。

系列文章基于Kernel 4.19

 

2、关键数据结构

2.1 cdev

struct cdev {
    struct kobject kobj;
    struct module *owner;
    const struct file_operations *ops;
    struct list_head list;
    dev_t dev;
    unsigned int count;
} __randomize_layout;

结构体名称cdev

文件位置include/linux/cdev.h

主要作用cdev可以理解为char device,用来抽象一个字符设备。

核心成员及含义

  • kobj:表示一个内核对象。
  • owner:指向该模块的指针
  • ops:指向文件操作的指针,包括openreadwrite等操作接口
  • list:用于将该设备加入到内核模块链表中
  • dev:设备号,由主设备号和次设备号构成
  • count:表示有多少个同类型设备,也间接表示设备号的范围
  • __randomize_layout:一个编译器指令,用于随机化结构体的布局,以增加安全性。

 

2.2 file_operations

struct file_operations {
    struct module *owner;
    loff_t (*llseek) (struct file *, loff_tint);
    ssize_t (*read) (struct file *, char __user *, size_tloff_t *);
    ssize_t (*write) (struct file *, const char __user *, size_tloff_t *);
    ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
    ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
    int (*iterate) (struct file *, struct dir_context *);
    int (*iterate_shared) (struct file *, struct dir_context *);
    __poll_t (*poll) (struct file *, struct poll_table_struct *);
    long (*unlocked_ioctl) (struct file *, unsigned intunsigned long);
    long (*compat_ioctl) (struct file *, unsigned intunsigned long);
    int (*mmap) (struct file *, struct vm_area_struct *);
    unsigned long mmap_supported_flags;
    int (*open) (struct inode *, struct file *);
    int (*flush) (struct file *, fl_owner_t id);
    int (*release) (struct inode *, struct file *);
    int (*fsync) (struct file *, loff_tloff_tint datasync);
    int (*fasync) (int, struct file *, int);
    int (*lock) (struct file *, int, struct file_lock *);
    ssize_t (*sendpage) (struct file *, struct page *, intsize_tloff_t *, int);
    unsigned long (*get_unmapped_area)(struct file *, unsigned longunsigned longunsigned longunsigned long);
    int (*check_flags)(int);
    int (*flock) (struct file *, int, struct file_lock *);
    ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_tunsigned int);
    ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_tunsigned int);
    int (*setlease)(struct file *, long, struct file_lock **, void **);
    long (*fallocate)(struct file *file, int mode, loff_t offset,
              loff_t len);
    void (*show_fdinfo)(struct seq_file *m, struct file *f);
#ifndef CONFIG_MMU
    unsigned (*mmap_capabilities)(struct file *);
#endif
    ssize_t (*copy_file_range)(struct file *, loff_t, struct file *,
            loff_tsize_tunsigned int);
    int (*clone_file_range)(struct file *, loff_t, struct file *, loff_t,
            u64);
    int (*dedupe_file_range)(struct file *, loff_t, struct file *, loff_t,
            u64);
    int (*fadvise)(struct file *, loff_tloff_tint);
} __randomize_layout;

结构体名称file_operations

文件位置include/linux/fs.h

主要作用:正如其名,主要用来描述文件操作的各种接口,Linux一切接文件的思想,内核想要操作哪个文件,都需要通过这些接口来实现。

核心成员及含义

  • open:打开文件的函数
  • read:读取文件的函数。
  • write:写入文件的函数。
  • release:关闭文件的函数。
  • flush:刷新文件的函数,通常在关闭文件时调用。
  • llseek:改变文件读写指针位置的函数。
  • fsync:将文件数据同步写入磁盘的函数。
  • poll:询问文件是否可被非阻塞读写

 

2.3 dev_t

typedef u32 __kernel_dev_t;

typedef __kernel_dev_t  dev_t;

类型名称dev_t

文件位置include/linux/types.h

主要作用:表示字符设备对应的设备号,其中包括主设备号和次设备号。

 

3、数据结构之间关系

image-20231123085448145

上图绘制是对字符设备驱动程序的数据结构以及API的关系图,

有需要原始文件,可在公~号【嵌入式艺术】获取。

 

4、字符设备驱动整体架构

4.1 加载与卸载函数

驱动首先实现的就是加载和卸载函数,也是驱动程序的入口函数。

我们一般这么定义驱动的加载卸载函数:

static int __init xxx_init(void)
{

}

static void __exit xxx_exit(void)
{
    
}

module_init(xxx_init);
module_exit(xxx_exit);

这段代码就是实现一个通用驱动的加载与卸载,关于module_initmodule_exit的实现机制,可以查看之前总结文章。

 

4.2 设备号管理

4.2.1 设备号的概念

每一类字符设备都有一个唯一的设备号,其中设备号又分为主设备号和次设备号,那么这两个分别作用是什么呢?

  • 主设备号:用于标识设备的类型,
  • 次设备号:用于区分同类型的不同设备

简单来说,主设备号用于区分是IIC设备还是SPI设备,而次设备号用于区分IIC设备下,具体哪一个设备,是MPU6050还是EEPROM

 

4.2.2 设备号的分配

了解了设备号的概念,Linux中设备号有那么多,那么我们该如何去使用正确的设备号呢?

设备号的分配方式有两种,一种是动态分配,另一种是静态分配,也可以理解为一种是内核自动分配,一种是手动分配。

静态分配函数

int register_chrdev_region(dev_t from, unsigned count, const char *name);
  • from:表示已知的一个设备号
  • count:表示连续设备编号的个数,(同类型的设备有多少个)
  • name:表示设备或者驱动的名称

函数作用:以from设备号开始,连续分配count个同类型的设备号

 

**动态分配函数**:

int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name);
  • dev:设备号的指针,用于存放分配的设备号的值
  • baseminor:次设备号开始分配的起始值
  • count:表示连续设备编号的个数,(同类型的设备有多少个)
  • name:表示设备或者驱动的名称

函数作用:从baseminor次设备号开始,连续分配count个同类型的设备号,并自动分配一个主设备号,将主、次组成的设备号信息赋值给*dev

 

**这两个函数最大的区别在于**:

  • register_chrdev_region:调用前,已预先定义好了主设备号和次设备号,调用该接口后,会将自定义的设备号登记加入子系统中,方便系统追踪系统设备号的使用情况。
  • alloc_chrdev_region:调用前,未定义主设备号和次设备号;调用后,主设备号以0来表示,以自动分配,并且将自动分配的设备号,同样加入到子系统中,方便系统追踪系统设备号的使用情况。

 

这两个函数的共同点在于

系统维护了一个数组列表,用来登记所有的已使用的设备号信息,这两个接口归根到底也是将其设备号信息,登记到系统维护的设备号列表中,以免后续冲突使用。

Linux中,我们可以通过cat /proc/devices命令,查看所有i登记的设备号列表。

 

后面有时间,我们可以详细聊设备号的自动分配机制,管理机制。

 

4.2.3 设备号的注销

设备号作为一种系统资源,当所对应的设备卸载时,当然也要将其所占用的设备号归还给系统,无论时静态分配,还是动态分配,最终都是调用下面函数来注销的。

void unregister_chrdev_region(dev_t from, unsigned count);
  • from:表示已知的一个设备号
  • count:表示连续设备编号的个数,(同类型的设备有多少个)

函数作用:要注销from主设备号下的连续count个设备

 

4.2.4 设备号的获取

设备号的管理很简单,在关键数据结构中,我们看到设备号的类型是dev_t,也就是u32类型表示的一个数值。

其中主设备号和次设备号的分界线,由MINORBITS宏定义指定:

#define MINORBITS 20

也就是主设备号占用高12bit,次设备号占用低20bit

并且,内核还提供了相关API接口,来获取主设备号和次设备号,以及生成设备号的接口,如下:

#define MINORMASK ((1U << MINORBITS) - 1)

#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
#define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))

以上,通过移位操作,来实现主次设备号的获取。

 

4.2.4 通用代码实现

#define CUSTOM_DEVICE_NUM 0
#define DEVICE_NUM 1
#device DEVICE_NAME "XXXXXX"
static dev_t global_custom_major = CUSTOM_DEVICE_NUM;

static int __init xxx_init(void)
{
    dev_t custom_device_number= MKDEV(global_custom_major, 0); // custom device number
    /* device number register*/
    if (global_custom_major) {
        ret = register_chrdev_region(custom_device_number, DEVICE_NUM, DEVICE_NAME);
    } else {
        ret = alloc_chrdev_region(&custom_device_number, 0, DEVICE_NUM, DEVICE_NAME);
        global_custom_major = MAJOR(custom_device_number);
    }
}

static void __exit xxx_exit(void)
{
    unregister_chrdev_region(MKDEV(global_mem_major, 0), DEVICE_NUM);
}

module_init(xxx_init);
module_exit(xxx_exit);

该函数实现了设备号的分配,如果主设备号为0,则采用动态配分的方式,否则采用静态分配的方式。

 

更多干货可见:高级工程师聚集地,助力大家更上一层楼!

 

4.3 字符设备的管理

了解完设备号的管理之后,我们来看下字符设备是如何管理的。

4.3.1、字符设备初始化

void cdev_init(struct cdev *cdev, const struct file_operations *fops);
  • cdev:一个字符设备对象,也就是我们创建好的字符设备
  • fops:该字符设备的文件处理接口

函数作用:初始化一个字符设备,并且将所对应的文件处理指针与字符设备绑定起来。

 

4.3.2、字符设备注册

int cdev_add(struct cdev *p, dev_t dev, unsigned count);
  • p:一个字符设备指针,只想待添加的字符设备对象
  • dev:该字符设备所负责的第一个设备编号
  • count:该类型设备的个数

函数作用:添加一个字符设备驱动到Linux系统中。

 

4.3.3、字符设备注销

void cdev_del(struct cdev *p);
  • p:指向字符设备对象的指针

函数作用:从系统中移除该字符设备驱动

 

4.4 文件操作接口的实现

因为在Linux中,一切皆文件的思想,所以每一个字符设备,也都有一个文件节点来对应。

我们在初始化字符设备的时候,会将struct file_operations的对象与字符设备进行绑定,其作用是来处理该字符设备的openreadwrite等操作。

我们要做的就是去实现我们需要的函数接口,如:

static const struct file_operations global_mem_fops = {
    .owner = THIS_MODULE,
    .llseek = global_mem_llseek,
    .read = global_mem_read,
    .write = global_mem_write,
    .unlocked_ioctl = global_mem_ioctl,
    .open = global_mem_open,
    .release = global_mem_release,
};

至此,我们一个基本的字符设备驱动程序的框架就基本了然于胸了

 

5、总结

本篇文章,旨在通俗易懂的讲解:

  • 字符设备驱动相关数据结构
  • 数据结构关系图
  • 核心API接口
  • 字符设备驱动整体框架

希望对大家有所帮助。

嵌入式艺术
MEET SPRING
万物更生,新岁开启


嵌入式艺术 分享一些高级嵌入式相关知识,包括:计算机基础、操作系统、Linux驱动、Linux内核、RT-thread等,除此之外,并且会组织一些简单的训练项目,一起成长。 我的创作理念:专注分享高质量的嵌入式文章,让大家读有所得!
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 74浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 76浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 48浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 83浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 131浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 122浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦