【科普】芯片制造工艺:光刻(下)--EUV极紫外光刻

滤波器 2024-03-22 10:00

    从光学光刻的原理可知,减小光源波长可以提高分辨率。所以光学光刻经历了从436nm到365nm、248nm,再到193nm的过程,那么极紫外光刻系统为什么会选择13.5nm?极紫外光刻系统为什么会选用全反射式的,而不是之前几代的折射透镜方式?

EUV极紫外光刻的原理是什么?有哪些难点?又是如何解决的?

本文主要内容:

  1. EUV光刻的选择

  2. EUV光源

  3. 曝光系统

     3.1 真空带来的限制

     3.2 多层膜

     3.3 照明

     3.4 投影

     3.5 更高NA--下一代EUV

     3.6 工作台




1. EUV光刻的选择--简述

(1) EUV光刻为什么是全反射式的?

     所有材料对波长小于40nm的光吸收都很强。对于折射透镜中透镜元件的典型厚度的固体,EUV光的透射率实际上为0。这就排除了EUV光刻曝光系统采用折射式或折反式光学设计的可能性。

(2)EUV光源为什么是13.5nm?

     EUV的反射镜依赖的是多层膜技术,多层膜考虑了多种因素最终选择了Mo/Si多层膜,选定了多层膜后,光源需要针对根据多层膜的反射特性优选出的波长进行设计。


2. EUV光源

       自然界中,日冕会产生EUV。人工EUV可由等离子源和同步辐射源得到。EUV是最易被空气吸收的谱段,因此其传输环境需高度真空。    

(1)产生原理:

      13.5nm的极紫外光相当于大约92eV的光子,超越了所有固态物质价电子的电离能。产生EUV,需要物质被激发到等离子态,只有被带多个正电荷的离子束缚的电子才能够发射EUV(由较为深层的电子退激辐射形成)。例如,把+3碳离子继续剥除一个电子的过程需要65eV,其中的电子比普通价电子更受束缚。而带多电荷的正离子存在于热等离子体。

     目前用于芯片制造的极紫外光源为:激光等离子体光源(laser-produced plasma,LPP),在LPP中,离子由高强度相干激光脉冲的强电场产生:快速振荡的电场导致电子和离子反复碰撞,产生高价正离子,电子与这些高价离子结合时便会产生高能量的光子 

(2)具体实现:

 

激光轰击锡滴产生EUV的过程  素材源自:ASML官网    

      ASML的极紫外光刻机的光源中,极紫外光是由液态锡滴产生的等离子体放射产生的(在 ASML 开发的等离子体源中,每秒有 50000 个锡滴被喷射到真空室中),激光器为高功率CO2激光,波长为10.6μm。

素材源自:ASML官网    

      如上图所示,激光采用了主振荡器加功率放大器的架构。锡滴的喷射间隔为10~20μs。锡材料的好处是它在13.5nm波段附近有相对较强的EUV辐射谱线,并且锡的熔点很低,只有232℃。

LPP整体 素材源自: ASML官网    

      LPP光源最重要的特性之一是红外光和EUV之间的转换效率。提高效率的一项重要创新是引入了预脉冲:锡滴液首先被一个红外光预脉冲击中,预脉冲的能量比产生等离子体发射出极紫外光的主脉冲能量低很多,但该能量足以将锡液滴变成碟状或部分电离的雾状。当这个碟状靶被随后的主脉冲击中时,能实现接近6%的转换效率。这样的设计,为光源性能带来了很大的提升。

3.曝光系统

3.1 真空带来的限制

      由于EUV光会被空气强烈吸收,因此曝光过程中晶圆、透镜、掩膜都必须处于真空中。真空带来了一些限制:

(1) 物镜、晶圆、掩膜的热效应:物镜加热会导致像差,尤其是会导致离焦和套刻误差,晶圆和掩膜的加热也会影响套刻精度。在光学光刻曝光系统中,气流是一种控制物镜和晶圆热效应的有效方法。但EUV的真空要求限制了这种方法:在EUV光刻系统中,气流的压力必须远小于大气压力。低压下的热传输功效十分有限,除非通过使用差分泵实现高气压的空间和EUV光路的分离。

(2) 长期以来,高纯气体被用来清扫光学光刻机物镜系统,使镜片免受污染。干式曝光中,气流用来防止底部透镜被光刻胶的释气污染。在EUV中,通常使用低分压氢气。

(3) 在光学光刻中,晶圆和掩膜是通过真空方法被夹在各自的卡盘上,卡盘上的吸力来自气压。在EUV光刻系统中,使用的是静电吸盘。

3.2 多层膜

     所有材料对波长小于40nm的光吸收都很强。阻碍实现波长短于193nm光学光刻的问题,主要是缺乏合适的投射或反射光学材料用于镜片、掩膜及其保护膜的制备以满足微缩投影光刻的要求在20世纪80年代,多层膜技术得到了开发,可以提供波长在4~25nm波段实用的反射率。正是这一进步,全反射式光学系统的构想得以在光刻技术中实现

       多层膜反射镜通过交替沉积高原子序数和低原子序数材料制备,这种方式将在每一界面提供一个较小的但是有效的折射率差异。通过相长干涉,各个层反射精确叠加时,光会被放大。过程如下:

素材源自:蔡司官网    

      蔡司将极薄的硅层和钼层气相沉积到玻璃表面上,层厚度只有几纳米,最多有 100 层。最终实现了反射率高达近 70% 。

3.3 照明

      与光学光刻机一样,EUV的照明系统具有双重作用:

(1)让光能够均匀地照射在照明狭缝上。

(2)为实现增强分辨率和为光源掩膜优化提供所需调整照明形态的能力。

      从中间焦点出来的点光源经过两组可转动反射镜阵列,变成相当均匀的光。可用于照明编程的微镜数量可达数千个,所以照明形态可以实现非常精细的微调:

图源:EUV Lithography Industrialization and future outlook .Miyazaki

      0.33NA EUV光刻机的照明和投影光学系统结构如下图。 照明系统的光束照射反射式掩膜,从掩膜所得到的的光学图案再被若干反射镜组成的物镜投影成像,最后聚焦到晶圆上。

       由于EUV系统是反射式的,所以入射到掩膜上的光只能是非法线入射。反射镜表面的反射率与入射角相关,比如:

计算的Mo/Si多层膜反射率

      对于0.33NA系统,掩膜的平均入射角为6°,缩小倍率为1 : 4。

3.4 投影

      掩膜到晶圆之间为投影部分。目前ASML的EUV投影部分采用了6组物镜,如下图:

图源

投影系统遇到的难点和解决方案:

(1)杂散光:物镜的形貌误差导致了像差;中频粗糙度产生散射,并降低了成像质量;高频粗糙度造成了光强度的损失。解决方法有:避免出现和抛光工具尺寸统一尺度的镜面粗糙度、改善底层基板粗糙度、通过光学邻近进行修正等。

素材源自:P. Kurs. The EUV alpha demo tool program at Carl Zeiss SMT AG. 2004

3.5 更高NA(数值孔径)--下一代EUV

      根据瑞利判据公式可知,想要提升分辨率,可以通过增大数值孔径NA来实现。在现有的光学系统中,增加NA的问题:增加NA相当于加宽了掩模反射的光束的角度和投射到晶圆上的光束的角度。投影光学系统由六个反射镜组成。它们通常通过从最靠近掩模的一侧开始的 1 (M1) 到 6 (M6) 之间的数字来区分,物镜为M6。

    将NA从0.25提高到0.33时没有问题,但将NA从0.33提高到0.55时,物镜(M6)前面的反射镜(M5)出现问题:M5镜片要让光线以更高的角度进入M6镜片,还必须以更宽的发散角将光线引导到M6镜片。标准 EUV 涂层无法实现反射M5上的大角度和发散角

       因此, 蔡司设计了一种光学系统:通过在M5和M6镜片的中心打孔来让EUV光通过。

素材源自:High NA EUV optics - preparing lithography for the next big step。Paul Gräupner,Peter Kürz,Judon Stoeldraijer ,Jan van Schoot 。

       M4镜头反射的光线穿过M6镜头中心的孔,到达M5镜头。M5透镜反射的光束被M6透镜(物镜)反射。反射光穿过M5透镜中心的孔到达晶圆。这样就减小了 M5 镜头处的光束角度,从而实现了对比度和分辨率。

      另外,通过将光学系统的反射透镜的数量从传统的六个增加到八个,则无需在反射透镜上钻孔即可实现0.55的NA。然而,添加两个反射透镜,EUV光的能量减少了一半以上。因此,为了保持吞吐量,光源输出必须加倍。因此,ASML的NA为0.55的光刻系统并没有采用八透镜光学系统。

       当 NA 想达到更高的 0.7 时,实现的方法就变得有限:添加两个反射透镜,并且同时在一些反射透镜上钻孔。

3.6 工作台

      光学光刻中,晶圆和掩膜平台采用的是空气轴承。在EUV中,采用的是磁轴承。

EUV的工作台  素材源自:ASML官网    

      在工作台的底部有一个磁体阵列。工作台运动是通过在台下方的定子绕组的驱动电流来实现的。示意图如下:

       磁体阵列通常采用Halbach结构,在阵列的一侧产生强磁场,另一侧产生非常弱的磁场。

© 滤波器 微信公众号

滤波器 欢迎滤波器+微波射频行业人士关注! 掘弃平庸,学习更专业的技术知识!
评论
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 108浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 122浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 106浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 84浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦