2229字,学习BUCK降压电源电路

原创 工程师看海 2024-03-22 07:31
▼关注公众号:工程师看海▼

原文来自原创畅销书籍《硬件设计指南 从器件认知到手机基带设计》

在电子电路中,电源一般分为两类,一类是线性电源,一类是开关电源。线性电源具有电路简单、面积小、噪声小等优点。开关电源虽然噪声大、面积大,但是具有效率高和热损小等优点被广泛应用。

开关电源还可以细分为降压型、升压型和升降压几类。也可按照隔离、非隔离,或者同步、非同步再进一步细分。在手机、电脑等消费电子领域,降压型BUCK电源应用非常广泛,是电源工程师的入门课。

公众号[工程师看海],后台回复关键词:buck仿真文件,获取仿真文件

图2-1 (a)是DC-DC BUCK降压电源的原理图,如果不搞懂BUCK的原理而只按照官方参考原理图来设计的话,可能不会得到一个优秀可靠的电源,我们一定要以一个更深入的角度看待问题,只有这样,个人能力才会有提高。

(b)是芯片内部的功能框图,我们可以看到有两个MOS Q1和Q2,这种有两个控制MOS的BUCK被称为同步BUCK,异步BUCK中使用二极管代替Q2,把图中的开关部分和外围电感提取出来就构成了图2-2 的经典的异步BUCK拓扑图,图2-2 中的S对应图2-1 的Q1,图2-2 中的D对应图2-1 中的Q2。

图2-1BUCK原理图与内部框图

下面就介绍降压型BUCK电路的基本工作原理,并进行原理仿真。为了把我们的主要精力放在理解BUCK原理上,我们选择非同步BUCK进行开环分析,也就是电路中只有一个开关管,由二极管对电感进行续流放电,见图2-2 ,简约的东西经过组合往往会迸发出不可思议的结果,BUCK就是这样的电路。

图2-2BUCK电源拓扑

图2-2 中,当开关S导通时,SW电压为高电压,等于Vin,Vin给电感L充电,流过电感L的电流逐渐增加,充电电流路径如图中虚线箭头所示,电感电流充电波形见图2-3 ,SW高电平时电感处于充电状态。

当开关S断开时,SW为低电平,电感L通过负载和二极管D放电,电感L的电流逐渐减小,放电电流路径见图2-2 实线箭头部分,电感放电波形见图2-3 。

BUCK的基本工作过程就是对电感充放电的过程。

这里有个小说明,在同步BUCK中D会被开关代替,以提高效率。在S断开时,SW位置的电压是0,但是本章中使用的是续流二极管,则在S断开时,SW其实是有一部分的负电压的,差不多是-0.7V,这个问题在2.5.1节会有详细介绍。

图2-3BUCK开关节点电压波形和电感电流波形

下面推导BUCK输入、输出电压的计算关系,我们先不用管什么伏秒特性,只看最基本、最本质、与电感有关的公式:

V是电感两端的电压,L是电感量,△I是电感两端电流的变化量,△t是经过的时间,将公式(2-1)变换得到公式(2-2):

在BUCK建立稳态后,一个开关周期内,电感充、放电的电流是相等的,T*D是充电的时间,T*(1-D)是放电的时间(T为开关周期;D为占空比,就是开关(上管)导通的时间占整个开关周期的百分比),在稳态时电感充放电是相等的,可得到公式(2-3):

在充电时可得到公式(2-4),充电时电感两端的电压等于Vin-Vout,

同样的道理,可以计算得到放电过程电感电流的变化量:

联立2-3、2-4、2-5整理得到:

非常简单的计算过程,一点也不复杂。从公式(2-6)可以看出,由于D是小于1的数,因此输出Vo是小于输入Vi的,因此BUCK是降压电源。

公众号[工程师看海],后台回复关键词:buck仿真文件,获取仿真文件

下面看下基于Multisim软件的BUCK原理仿真,本书中所提供仿真电路仅供交流学习使用,实际工程要考虑的参数、因素太多,本书只关注所涉及的知识内容。仿真原理图见图2-4 ,输入电压Vin=10V,开关频率为2kHz,10Vpp方波,占空比是50%,电感取2.2mH。

图2-4BUCK电源仿真

图2-5 是在BUCK电源输出端并联了47uF电容后的结果,红色方波是开关节点SW位置电压波形(方波的-0.7V电压在2.5.1节有详细介绍),黑色平滑曲线是输出的电流波形,也就是电感充放电的电流波形。通过开关管对电感充放电,可以明显看到电流充放电时的平滑三角波形(电容有滤波效果)。输入电压是10V,占空比是50%,测试得到输出电压DC值是4.3V,接近公式2-6推导的10*50%=5V,思考:为什么计算和仿真相差0.7V呢?

公众号[工程师看海],后台回复关键词:buck仿真文件,获取仿真文件

图2-6 是断开C1 47uF电容的仿真结果,黑色电流曲线更接近三角波(无电容滤波效果),输出电压的纹波也会跟着变的陡峭。当改变输出电容时,有助于缓解输出电压的纹波,然而由于BUCK开关架构的先天特点,此纹波无法消除,只可以对它的纹波进行抑制。

同时,我们也可以看到由于续流二极管的存在,当开关断开后,红色波形有小段的负电压,这个负电压大约是-0.7v,这是和二极管相关,接近二极管的导通电压。与此同时,由于此二极管的存在,输入输出关系也略微改变,导致输出输入关系与公式2-6略有差异。这个二极管是会消耗能量的,为了进一步提升BUCK电源的效率就出现了同步BUCK电路,将续流二极管更换为开关管就可以得到同步BUCK电源。

以上就是BUCK降压电源的原理介绍。

图2-5并联47uF输出电容时仿真波形

图2-6没有输出电容时仿真波形

如果看到这里,请点赞、收藏、分享三连!

限时免费扫码进群,交流更多行业技术

推荐阅读

电池、电源

硬件文章精选

华为海思软硬件开发资料

工程师看海 专注硬件设计、PCB走线、模拟信号处理,微信公众号:工程师看海
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 251浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 159浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 111浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 236浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 125浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 232浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 185浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 187浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 197浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 165浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 228浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 255浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 250浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦