南开大学李福军、温州大学侴术雷&李林Angew:界面调控Zn(002)晶面定向沉积诱导无枝晶锌负极

锂电联盟会长 2024-03-20 12:13
点击左上角“锂电联盟会长”,即可关注!
【研究背景】
可充水系锌金属电池具有安全性高、价格低廉、环境友好等优点,在大规模电化学储能中具有潜在的应用前景。然而,锌负极存在枝晶生长、析氢腐蚀和表面钝化等问题,严重制约了锌金属电池的实际应用。在反复的沉积/剥离过程中存在锌再分布不均匀的情况,引发锌枝晶的生长;枝晶的形成导致锌负极与电解液接触的比表面积增加,从而增大界面析氢速率;负极表面的析氢反应会使界面OH-浓度升高,促进生成电化学惰性的钝化副产物;钝化产物会加剧负极表面的不均匀程度并扩大电极极化,促进枝晶的形成,导致Zn可逆性差和容量快速衰减。简言之,这三者之间并非独立存在,相互之间存在较大的作用和影响。因此合理调控锌负极-电解液界面对制备高可逆锌金属电池至关重要。

【工作介绍】
近期,南开大学李福军教授联合温州大学侴术雷教授、李林特聘教授,在Angewandte Chemie期刊上发表题为“Interfacial Engineering for Oriented Crystal Growth toward Dendrite-Free Zn Anode for Aqueous Zinc Metal Battery”的研究性论文。文中通过原位原子力显微镜,在Ag修饰的表面上实时可视化观测了Zn(002)晶面的平面成核和取向生长过程。Ag在Zn金属中的高溶解度使其在生成电沉积的锌之前形成固溶体缓冲层,其具有与Zn相同的晶体结构,消除了晶格失配引起的成核能垒。与传统的非导电涂层相比,银镀层的独特性在于其在初始成核及生长时期诱导Zn沿(002)晶面的优先生长,从而调控后续均匀致密无枝晶的沉积形貌,有效抑制界面副反应,平均锌利用率高达98.2%。得益于这种界面调控,镀银负极在0.5 mA cm-2的电流密度下具有600 h 的稳定循环寿命,远远高于纯锌负极体系的100 h。基于Zn@Ag负极的全电池在2 A g-1下循环1500圈后仍具有74.8%的容量保持率,高于纯锌体系的57.9%。

【内容表述】
本工作选择不同亲锌性的金属(Ag、Au和Al),进行成核行为研究。在30℃下,Ag在Zn中的溶解度约为1.10 at %,对应于银锌固溶相,标记为HCP-Zn。而室温下Zn-Al和 Zn-Au相图中无固溶体区域,对应于不同基底上不同的初始成核行为。密度泛函理论(DFT)证实Al基底与Zn的亲和力较差,不适合镀锌。与此形成鲜明对比的是,Ag和Au的结合能分别为-0.83和-1.07 eV,表明它们具有很强的亲锌性。但Au基底上沉积时需要克服非均相成核能垒,因此展现出39.6 mV的高成核过电位。得益于室温下的固溶体相,电沉积的锌在生成纯锌之前,银原子溶解在Zn内生成固溶合金,其具有与Zn相同的晶体结构,能够作为缓冲层消除成核能垒。图1c所得电压-曲线图证实其成核过电位基本为零。
图1. 不同基底的亲锌性。(a)Zn-Al, Zn-Au和Zn-Ag相图;(b)Zn原子与不同基底间的结合能;(c)电压-时间曲线。

首先在玻璃基底上采用原位AFM观测初始成核及早期生长行为。采用蒸镀的方式在洗净的玻璃上蒸镀50 nm金属Ag、Au、Al,并作为工作电极使用。在电流密度为40 μA cm-2的条件下,沉积10 min后在银表面形成单层Zn镀层,随着沉积时间增加,镀层既有沿径向水平扩张的趋势,也有垂直生长的趋势,形成明显的多层Zn镀层。在金玻璃基底上呈现半球状的沉积产物。而在铝基底上成核过程极其不均匀,在原位AFM观测的范围无成核位点。移动探针至光学显微镜明显能看到的沉积位点后测试,观测到不规则的大块聚集产物,其高度达940 nm,远高于金表面的300 nm和银表面的110 nm,表明Zn在Ag表面均匀成核的优越性。
图2. 基底依赖的成核行为。(a)Ag,(b)Au和(c)Al玻璃基底上初始成核和早期生长阶段的原位AFM图像;(d)不同基底上成核的示意图。

在商业化锌箔上蒸镀50 nm Ag,标记为Zn@Ag。在纯锌箔和Zn@Ag上观测初始成核及早期生长行为。电沉积的Zn在Zn@Ag电极上以高取向平面的形式呈现,主要沿水平方向生长,呈均匀的层状沉积。在纯锌箔体系中,电化学沉积的锌沿凸起处成核生长,纵向沉积高度显著。Zn@Ag电极在沉积30 min后呈现出光滑的表面,Rq为19.6 nm,明显小于裸锌箔上的75.4 nm。引入Ag涂层后,(002)的RTC值由7.9提高。74.9,与裸锌箔相比,Zn@Ag阳极的I(002)/I(101)值显著提高了50倍以上。这表明Zn@Ag上沉积的Zn优先暴露(002)晶面。XRD谱图表明,Zn@Ag上电沉积后的产物以(002)晶面占主导,与原位原子力显微镜观察到的平面生长一致。
图3. 平面成核模型。(a)Zn@Ag和(b)Zn箔基底上初始成核和早期生长阶段的原位AFM图像;(c)沉积过程中原位AFM图像的粗糙度;(d)原位AFM沉积后的XRD图谱和(e)相应的RTC数值。

原位AFM揭示初始成核和早期生长阶段的界面行为,而原位光学显微镜(OM)用于观察沉积后期的生长行为。为了提高成像质量,在负极表面覆盖韧性更强的黑色绝缘胶带。在Zn@Ag基底上,Ag涂层的引入诱导平面形核,从而调控光滑致密且无枝晶的Zn沉积。此外,即使在10.0 mAh cm-2的高沉积容量下,Zn@Ag上的锌沉积也保持均匀,无枝晶。大量的Zn2+离子聚集在不均匀的Zn成核位点周围并沉积,进一步加速了尖端生长。将Zn替换为Ti箔,可以捕捉到沉积Zn的形貌。在Ti@Ag箔上(通过在Ti箔上蒸镀50 nmAg)形成了均匀分布的Zn,但在裸露的Ti箔上存在大面积未沉积的暴露区域,表明Ag涂层在诱导均匀沉积行为的优越性。初始成核和后期长大的示意图如图4e所示。Ag涂层对Zn具有良好的亲合力,沿(002)晶面诱导成核,促进Zn均匀沉积,并能够有效抑制析氢和表面钝化。
图4. 均匀锌沉积。(a)原位OM图像;(b)成核过电位;(c)有限元模拟;(d)截面SEM图像;(e)界面行为示意图。

基于对称电池的变温阻抗测试,Zn@Ag||Zn@Ag电池的活化能(Ea)为42.17 kJ mol-1,远低于对称Zn||Zn电池的50.48 kJ mol-1。这表明通过抑制Zn2+在Ag表面的二维表面扩散,加速了Zn2+的传递动力学。引入Ag涂层后,交换电流密度从5.08 mA cm-2增加到6.52 mA cm-2,归因于银镀层引入抑制了析氢腐蚀和界面钝化。Zn@Ag阳极表现出稳定的循环,平均CE为98.2%,远高于裸锌的97.0%。如图5e所示,在固定容量为1.0 mAh cm-2的情况下,Zn@Ag对称电池在0.5 ~ 2.0 mA cm-2的过电位比纯锌电池小,这表明Ag涂层在调控初始成核和生长方面的优势。在图5f中,在0.5 mA cm-2和0.5 mAh cm-2下的过电位较小的Zn@Ag对称电池中实现了稳定Zn剥离/电镀行为。Zn||Zn电池在长期循环过程中,过电位明显增加。同样的过电位增长在1.0 mA cm-2和1.0 mAh cm-2的条件下也有观测到,这归因于钝化产物的积累。如图5所示,在5.0 mA cm-2和5.0 mAh cm-2下,Zn||Zn对称电池在约50 h时发生短路,而Zn@Ag对称电池在110 h内呈现稳定的电压分布。稳定性的增强归因于引入Ag涂层抑制了枝晶的生长。这意味着Zn||Zn对称电池的失效在小电流密度下为钝化产物的积累,大电流密度下对应于Zn枝晶生长所引发的短路。
图5. 界面动力学。(a)变温阻抗及(b)活化能;(c)CV曲线;(d)Aurbach CE;对称金属电池(e)倍率及(f-g)循环曲线。

图6a中较低的电荷转移电阻表明,Zn@Ag负极侧Zn2+离子扩散动力学加快,对应于界面钝化反应的抑制。CV曲线中两对主要的氧化还原峰,分别对应于V3+/V4+和V4+/V5+两步氧化还原反应。Zn@Ag||V2O5电池响应电流强度高,表示其放电容量高,这一点可以从图6c的恒流充放电曲线中得到证实。Zn@Ag||V2O5在2.0 A g-1下,经过1500次循环后,其容量保持率为210.8 mAh g-1,容量保持率为74.8%,远高于Zn||V2O5的139.7 mAh g-1和57.9%。
图6. 电化学性能。Zn||V2O5和Zn@Ag||V2O5的(a)阻抗;(b)CV曲线;(c)充放电曲线;(d)倍率;(e)长循环。

【结论】
本工作通过原位原子力显微镜可视化亲锌银涂层上沿Zn(002)晶面的平面成核和取向生长过程。Ag在Zn金属中的高溶解度使其形成固溶缓冲层,大大降低了成核能垒,促进平面成核和无枝晶沉积,加速界面动力学速率。沿(002)平面的优先沉积抑制了腐蚀和钝化,使得Zn@Ag||Cu的平均利用率高达98.2%。在2.0 A g-1下循环1500次后,Zn@Ag||V2O5的容量保持率为74.8%,高于纯锌负极的57.9%。这项工作揭示了基底依赖的成核行为,为高性能水性锌金属电池的锌负极界面调节提供指导。

Xunzhu Zhou, Bo Wen, Yichao Cai, Xiaomin Chen, Lin Li*, Qing Zhao, Shu-Lei Chou*, Fujun Li*. Interfacial Engineering for Oriented Crystal Growth toward Dendrite-Free Zn Anode for Aqueous Zinc Metal Battery, Angew. Chem. Inter. Ed., 2024.
https://doi.org/10.1002/anie.202402342
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 58浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 147浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 152浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 62浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 53浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 84浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦