射频前端大揭秘


无线通信系统中,一般包含有天线、射频前端、射频收发模块以及基带信号处理器四个部分。


随着5G时代的,天线以及射频前端的需求量及价值均快速上升,射频前端是将数字信号向无线射频信号转化的基础部件,也是无线通信系统的核心组件。



按照功能,可将射频前端分为发射端Tx以及接收端Rx。


按照器件不同,射频前端可分为功率放大器PA(发射端射频信号放大)、滤波器filter(发射、接受端信号滤波)、低噪声放大器LNA(接收端信号放大,降低噪声)、开关switch(不同通道切换)、双工器duplexer(信号选择,实现滤波匹配)、调谐器tuner(天线信号通道阻抗匹配)等。


● 滤波器Filter:选通特定频率,过滤干扰信号


滤波器(Filter),是射频前端中最重要的分立器件,使信号中特定频率成分通过而极大衰减其他频率成分,从而提高信号的抗干扰性及信噪比。


目前在手机射频市场中主要采用声学滤波技术。


根据制造工艺的不同,市面上的声学滤波器可分为声表面波滤波器(Surface Acoustic Wave,SAW)和体声波滤波器(Bulk Acoustic Wave,BAW)两大类。


其中SAW滤波器制作工艺简单,性价比高,主要应用于GHz以下的低频滤波,而BAW滤波器插损低,性能优秀,可以适用于高频滤波,但工艺复杂,价格较高。



● 滤波器:SAW/BAW对比


● 滤波器Filter:5G时代,BAW将成为主流


由于工艺复杂度、技术以及成本的限制,目前通信标准下更多射频前端采用SAW滤波器。


但随着5G渗透率的提升,BAW滤波器优异的性能和对高频的支持将使其成为手机射频前端的主流器件。



● 双工器/多工器:发射/接收信号的隔离


双工器(Diplexer),又称天线共用器,由两组不同频率的带阻滤波器组成。

利用高通、低通或带通滤波器的分频功能,使得同一天线或传输线可对两条信号路径进行使用,从而实现同一天线对两种多种不同频率信号的接收和发送。



● 功率放大器PA:放大射频信号进行发射

功率放大器(PA,Power Amplifier)是射频前端的核心部件,利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。


PA主要用于发射链路,通过把发射通道的微弱射频信号放大,使信号成功获得足够高的功率,从而实现更高通信质量、更强电池续航能力、更远通信距离。


PA的性能可以直接决定通信信号的稳定性和强弱。



随着半导体材料的不断发展,功率放大器也经历了CMOS、GaAs、GaN三大技术路线。


第一代半导体材料是CMOS,技术成熟且产能稳定。第二代半导体材料主要使用GaAs或SiGe,有较高的击穿电压,可用于高功率、高频器件应用。


第三代半导体材料GaN在性能上显著强亍GaAs,但成本较高。


目前移动端民用市场主要采用GaAs 作为功放,而GaN在部分基站端应用率先实现替代。未来GaN将成为高射频、大功耗应用的主要方案。




● 低噪声放大器LNA:放大接收信号,减少噪声引入


低噪声放大器(LNA,Low Noise Amplifier)是噪声系数很小的放大器,功能是把天线接收到的微弱射频信号放大,并尽量减少噪声的引入,LNA能够能有效提高接收机的接收灵敏度, 进而提高收发机的传输距离。


因此低噪声放大器的设计是否良好, 关系到整个通信系统的通信质量。



● 射频开关Switch:控制电路通断,实现信号切换


射频开关(Switch)的通过将多路射频信号中的任一路或几路控制逻辑连通,实现不同信号路径的切换,包括接收与发射的切换、不同频段间的切换等,以达到共用天线、共用通道,节省终端产品成本的目的。


射频开关主要包括移动通信传导开关、WiFi开关、天线调谐开关等。



● 调谐器Tuner:天线的阻抗匹配


天线调谐器(Tuner)是位于连接发射系统与天线的一种阻抗匹配网络,用以实现信号的接收、滤波、放大、增益控制等功能,使得天线在所有应用频率上辐射功率最大。


5G/Sub-6通信标准下,手机端中4x4下行链路MIMO要求每根天线能够高效地支持更宽的频率范围,相应对射频天线tuner的需求数量也会增加,以提高相应频段的辐射效率。



● 其他射频前端器件

Envelop Tracker (ET),即包络追踪器,用于提高承载高峰均功率比信号的功放效率,实现自适应功率放大输出。


与平均功率跟踪技术相比,包络追踪技术能够让功放的供电电压随输入信号的包络变化,改善射频功率放大器的能效。RF Reveiver,即射频接收机。


射频接收机中,射频信号经天线接收后,通过滤波器、LNA、模数转换器ADC等对信号进行变频解调,最后形成进入基带的基带信号。


射频接收机主要分超外差接收机、零中频接收机和近零中频接收机三种。



● 射频前端材料及工艺的发展




☆ END ☆

精彩回顾

  • 腔体滤波器技术提升解决方案
  • 腔体滤波器设计之----自动单腔频率温飘
  • 秒仿糖葫芦串形低通
  • 秒仿糖葫芦型低通后续之----低通优化
  • TE01模介质滤波器滤波器
  • 无源互调浅析
  • 如何选择谐振杆的尺寸使功率容量达到最佳
  • 金属介质混合+零腔案例
  • 三模并联耦合介质波导滤波器仿真实例
  • 同轴高低阻抗型低通的公差影响几何?
  • Coupfil对高阶强零点生成的结果偶会出错
  • 陶瓷滤波器的各项制备工序讲解_简介篇
  • (干货)陶瓷滤波器讲解----材料篇
  • (干货)陶瓷滤波器讲解----材料制备篇
  • 细而全的5G产业链详解
  • 陶瓷滤波器讲解----陶瓷材料检测篇
  • BAW,SAW和FBAR滤波器剖析
  • LTCC、IPD、SAW、BAW、FBAR滤波器入门以及应用场景分析

欢迎加入滤波器、多工器、天线、环形隔离器、功分耦合器、连接器、线缆负载等无源器件的大家庭,关注后可加群

长按扫左侧二维码可关注

本团队提供可信可靠的滤波器相关产品各种定制化服务,响应快,专业强,敬请咨询微信号18681587206

点个赞,才算真的看完呦

5G通信射频有源无源 5G通信,微波射频器件,TR组件,有源组件,无源器件,滤波器,双工器,合路器,同轴腔体,LC滤波器,高通带阻,功分耦合,环形器,隔离器,功放PA,低噪放LNA,同轴开关,线缆组件,转接器,连接器,毫米波器件以及设备,波导
评论
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 54浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 118浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 103浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 74浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 99浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 169浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 84浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 175浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 54浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 92浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 124浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 91浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦