【光电智造】5个异常值检测算法实战案例

今日光电 2024-03-14 18:00

今日光电

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

异常值检测(outlier)是一种数据挖掘过程,用于确定数据集中发现的异常值并确定其出现的详细信息。当前自动异常检测至关重要,因为大量数据无法手动标记异常值。自动异常检测具有广泛的应用,例如信用卡欺诈检测,系统健康监测,故障检测以及传感器网络中的事件检测系统等。今天我们就通过使用python来实现异常值的自动检测系统的实战开发。我们将会使用以下技术来实现异常值检测:

  • KMeans[1]
  • PCA[2]
  • IsolationForest[3]
  • SVM[4]
  • EllipticEnvelope[5]

数据

Expedia是全球最大的在线旅行社(OTA,类似我们的携程网),它每天为数百万旅行购物者提供搜索服务其中包括用户在Expedia网站上搜索酒店的相关信息,如国家,地区,房型,价格,入住天数,入住时间等信息。

数据地址:https://www.kaggle.com/c/expedia-personalized-sort/data

我们想通过这个数据集来检测其中价格的异常值。由于Expedia提供的数据集非常大,为了能很好的演示我们的异常值检测功能,我们将从Expedia数据集中过滤出一个子集,该子集只包含用户查询的酒店标间(srch_room_count=1)和酒店所在地为美国(visitor_location_country_id=219)的信息。字段的含义如下:

  • prop_id:酒店Id
  • datetime: 用户查询的时间
  • price_usd:价格(美元)
  • srch_booking_window:从查询日期开始的酒店住宿天数
  • srch_saturday_night_bool:如果住宿从周四晚上开始,小于等于4个晚上(必须包含周六晚上)则为1,否则为0

我们会看到同一家酒店,不同的住宿天数,是否包含周六晚,都会导致标间(单间)价格的不同,我们将从中找出价格的异常值。

df = pd.read_csv('./data/expedia_train.csv')
# 数据集获取:公众号:数据STUDIO 后台回复 Expedia
#过滤Id为104517的酒店
df = df.loc[df['prop_id'] == 104517]
#过滤标间
df = df.loc[df['srch_room_count'] == 1]
#219表示美国
df = df.loc[df['visitor_location_country_id'] == 219]
df = df[['date_time''price_usd''srch_booking_window''srch_saturday_night_bool']]
df.head(10)
我们看一下数据集元数据信息:
df.info()

我们发现变量date_time的类型不是datetime类型,这会使我们在做可视化的时候出现问题,所以我们要将date_tiem的类型设置为datetime型,接下来我们主要目的是发现价格(price_usd)的异常值,所以我们首先看一下价格的分布情况:

#将date_time的类型设置为datetime
df['date_time'] = pd.to_datetime(df['date_time'])
df = df.sort_values('date_time')
print(df['price_usd'].describe())
df['price_usd'].hist()

我们发现价格的均值是112,但是最大值却是5584. 这个一个极端的最大值。似乎所有价格数据都小于500,只有一个极端最大值5584。为了我们在后面能找到更多不是极端的异常值,我们先删除这个极端最大值。

df = df.loc[df['price_usd'] < 5584]
print(df['price_usd'].describe())
df['price_usd'].hist()

删除价格的极端最大值以后,价格分布基本趋于正常(略微右偏)。

时间序列可视化

下面我们根据时间对价格进行可视化。

df.plot(x='date_time', y='price_usd', figsize=(12,6))
plt.xlabel('时间')
plt.ylabel('价格(美元)')
a = df.loc[df['srch_saturday_night_bool'] == 0'price_usd']
b = df.loc[df['srch_saturday_night_bool'] == 1'price_usd']
plt.figure(figsize=(106))
plt.hist(a, bins = 50, alpha=0.5, label='不含周六晚上')
plt.hist(b, bins = 50, alpha=0.5, label='含周六晚上')
plt.legend(loc='upper right')
plt.xlabel('价格')
plt.ylabel('数量')
plt.show();

从上面的直方图可知含周六晚上的(srch_saturday_night_bool=1)的价格均值要大于不含周六晚上的(srch_saturday_night_bool=1)价格均值。含周末的房价略高一些,这应该是合理的。

基于聚类的异常检测

k-means是一种广泛使用的聚类算法。它创建了k个具有相似特性的数据组。不属于这些组的数据实例可能会被标记为异常。在我们开始k-means聚类之前,我们使用elbow方法来确定最佳聚类数量。

data = df[['price_usd''srch_booking_window''srch_saturday_night_bool']]
n_cluster = range(120)
kmeans = [KMeans(n_clusters=i).fit(data) for i in n_cluster]
scores = [kmeans[i].score(data) for i in range(len(kmeans))]

fig, ax = plt.subplots(figsize=(10,6))
ax.plot(n_cluster, scores)
plt.xlabel('聚类集群数')
plt.ylabel('分数')
plt.title('Elbow 曲线')
plt.show()

为了找出合理的距离中心数,我们尝试尽可能多的聚类中心数(从1个到20个聚类中心),然后我们画出Elbow曲线,通过观察Elbow曲线,我们发现当我们的聚类中心数量增加到10个以上时Elbow曲线趋于收敛,因此我们大致可以将聚类中心数定为10.

下面我们将K-means算法的n_clusters设置为10,然后我们将数据进行3D可视化。

X = df[['price_usd''srch_booking_window''srch_saturday_night_bool']]
X = X.reset_index(drop=True)
km = KMeans(n_clusters=10)
km.fit(X)
km.predict(X)
labels = km.labels_

fig = plt.figure(1, figsize=(7,7))
ax = Axes3D(fig, rect=[000.951], elev=48, azim=134)
ax.scatter(X.iloc[:,0], X.iloc[:,1], X.iloc[:,2],
          c=labels.astype(np.float), edgecolor="k")
ax.set_xlabel("price_usd")
ax.set_ylabel("srch_booking_window")
ax.set_zlabel("srch_saturday_night_bool")
plt.title("K Means", fontsize=14);

接下来我们要确定需要保留数据中的哪些主要成分(特征)

data = df[['price_usd''srch_booking_window''srch_saturday_night_bool']]
X = data.values

#标准化处理,均值为0,标准差为1
X_std = StandardScaler().fit_transform(X)
mean_vec = np.mean(X_std, axis=0)
#计算协方差
cov_mat = np.cov(X_std.T)

#计算特征值和特征向量
eig_vals, eig_vecs = np.linalg.eig(cov_mat)

#每个特征值对应一组特征向量
eig_pairs = [ (np.abs(eig_vals[i]),eig_vecs[:,i]) for i in range(len(eig_vals))]
eig_pairs.sort(key = lambda x: x[0], reverse= True)

#特征值求和
tot = sum(eig_vals)

#每个主要成分的解释方差
var_exp = [(i/tot)*100 for i in sorted(eig_vals, reverse=True)] 
#累计的解释方差
cum_var_exp = np.cumsum(var_exp) 

plt.figure(figsize=(105))
plt.bar(range(len(var_exp)), var_exp, alpha=0.3, align='center', label='独立的解释方差', color = 'g')
plt.step(range(len(cum_var_exp)), cum_var_exp, where='mid',label='累积解释方差')
plt.ylabel('解释方差率')
plt.xlabel('主成分')
plt.legend(loc='best')
plt.show();

我们首先对数据进行标准化处理(StandardScaler),然后再计算特征变量之间的协方差矩阵,协方差矩阵反应了特征变量之间的相关性,如果两个特征变量之间的协方差为正则说明它们之间是正相关关系,如果为负则说明它们之间是负相关关系,如果为0则说明特征变量之间是相互独立的关系,不存在相关关系(有时候我们也会用相关系数矩阵来代替协方差矩阵)。然后在协方差矩阵的基础上又计算了协方差矩阵的特征值和特征向量,根据特征值计算出每个主成分(特征)的解释方差,以及累计解释方差,我们这样做的目的是为了下一步做主成分分析(PCA)挑选出特征变量中的主成分。我们挑选前2个主成分,因为它们的累计解释方差为80%。

从上图可知我们的三个主成分,第一个主成分(特征)解释了将近50%的方差变化,第二个主成分解释了近30%的方差变化,那么前2个主成分解释了近80%的方差。因此接下来我们将使用PCA算法进行降维并将设置参数n_components=2。

data = df[['price_usd''srch_booking_window''srch_saturday_night_bool']]
X = data.values

#标准化处理,均值为0,标准差为1
X_std = StandardScaler().fit_transform(X)
data = pd.DataFrame(X_std)

#将特征维度降到2
pca = PCA(n_components=2)
data = pca.fit_transform(data)
# 降维后将2个新特征进行标准化处理
scaler = StandardScaler()
np_scaled = scaler.fit_transform(data)
data = pd.DataFrame(np_scaled)

kmeans = [KMeans(n_clusters=i).fit(data) for i in n_cluster]
df['cluster'] = kmeans[9].predict(data)
df.index = data.index
df['principal_feature1'] = data[0]
df['principal_feature2'] = data[1]
df.head()

基于聚类的异常检测中的假设是,如果我们对数据进行聚类,则正常数据将属于聚类,而异常将不属于任何聚类或属于小聚类。我们使用以下步骤来查找和可视化异常值。

  • 计算每个数据点与其最近的聚类中心之间的距离。最大的距离被认为是异常的。
  • 设定一个异常值的比例outliers_fraction为1%,这样设置是因为在标准正太分布的情况下(N(0,1))我们一般认定3个标准差以外的数据为异常值,3个标准差以内的数据包含了数据集中99%以上的数据,所以剩下的1%的数据可以视为异常值。
  • 根据异常值比例outliers_fraction,计算异常值的数量number_of_outliers
  • 设定一个判定异常值的阈值threshold
  • 通过阈值threshold来判定数据是否为异常值
  • 对数据进行可视化(包含正常数据和异常数据)
# 计算每个数据点到其聚类中心的距离
def getDistanceByPoint(data, model):
    distance = pd.Series()
    for i in range(0,len(data)):
        Xa = np.array(data.loc[i])
        Xb = model.cluster_centers_[model.labels_[i]]
        distance.set_value(i, np.linalg.norm(Xa-Xb))
    return distance

#设置异常值比例
outliers_fraction = 0.01

# 得到每个点到取聚类中心的距离,我们设置了10个聚类中心,kmeans[9]表示有10个聚类中心的模型
distance = getDistanceByPoint(data, kmeans[9])

#根据异常值比例outliers_fraction计算异常值的数量
number_of_outliers = int(outliers_fraction*len(distance))

#设定异常值的阈值
threshold = distance.nlargest(number_of_outliers).min()

#根据阈值来判断是否为异常值
df['anomaly1'] = (distance >= threshold).astype(int)

#数据可视化
fig, ax = plt.subplots(figsize=(10,6))
colors = {0:'blue'1:'red'}
ax.scatter(df['principal_feature1'], df['principal_feature2'], c=df["anomaly1"].apply(lambda x: colors[x]))
plt.xlabel('principal feature1')
plt.ylabel('principal feature2')
plt.show();

上图中红色的点即是被认定的异常值,它们大约占总数据量的1%。

df = df.sort_values('date_time')
df['date_time_int'] = df.date_time.astype(np.int64)
fig, ax = plt.subplots(figsize=(12,6))

a = df.loc[df['anomaly1'] == 1, ['date_time_int''price_usd']] #anomaly

ax.plot(df['date_time_int'], df['price_usd'], color='blue', label='Normal')
ax.scatter(a['date_time_int'],a['price_usd'], color='red', label='Anomaly')
plt.xlabel('Date Time Integer')
plt.ylabel('price in USD')
plt.legend()
plt.show()

从上图可知,经过PCA和KMeans计算出的异常值,它们的价格大多位于价格区间的最高点和最低点处,这应该是合理的。

孤立森林(IsolationForest)异常检测

IsolationForest[6]算法它是一种集成算法(类似于随机森林)主要用于挖掘异常(Anomaly)数据,或者说离群点挖掘,总之是在一大堆数据中,找出与其它数据的规律不太符合的数据。该算法不采样任何基于聚类或距离的方法,因此他和那些基于距离的的异常值检测算法有着根本上的不同,孤立森林认定异常值的原则是异常值是少数的和不同的数据。它通常用于网络安全中的攻击检测和流量异常等分析,金融机构则用于挖掘出欺诈行为。

  • 当我们使用IsolationForest[7]算法时需要设置一个异常值比例的参数contamination, 该参数的作用类似于之前的outliers_fraction。
  • 使用 fit 方法对孤立森林模型进行训练
  • 使用 predict 方法去发现数据中的异常值。返回1表示正常值,-1表示异常值。
data = df[['price_usd''srch_booking_window''srch_saturday_night_bool']]
scaler = StandardScaler()
np_scaled = scaler.fit_transform(data)
data = pd.DataFrame(np_scaled)
# 训练孤立森林模型
model =  IsolationForest(contamination=outliers_fraction)
model.fit(data)

#返回1表示正常值,-1表示异常值
df['anomaly2'] = pd.Series(model.predict(data)) 

fig, ax = plt.subplots(figsize=(10,6))
a = df.loc[df['anomaly2'] == -1, ['date_time_int''price_usd']] #异常值
ax.plot(df['date_time_int'], df['price_usd'], color='blue', label = 'Normal')
ax.scatter(a['date_time_int'],a['price_usd'], color='red', label = 'Anomaly')
plt.legend()
plt.show();

从上图可知,使用孤立森林预测的异常值,它们的价格大多位于价格区间的最高点或最低点处。

支持向量机(SVM)的异常检测

SVM通常应用于监督式学习,但OneClassSVM[8]算法可用于将异常检测这样的无监督式学习,它学习一个用于异常检测的决策函数其主要功能将新数据分类为与训练集相似的正常值或不相似的异常值。

OneClassSVM

OneClassSVM的思想来源于这篇论文[9],SVM使用大边距的方法,它用于异常检测的主要思想是:将数据密度较高的区域分类为正,将数据密度较低的区域分类为负,如下图所示:

  • 在训练OneClassSVM模型时,我们需要设置参数nu = outliers_fraction,它是训练误差分数的上限和支持向量分数的下限,并且必须在0和1之间。基本上它代表了我们期望的异常值在我们的数据集中的比例。
  • 指定要在算法中使用的核类型:rbf。它使SVM能够使用非线性函数将超空间投影到更高维度。
  • gamma是RBF内核类型的参数,并控制各个训练样本的影响 - 这会影响模型的“平滑度”。
  • predict 对数据进行分类,因为我们的模型是单类模型,所以返回+1或-1,-1表示是异常值,1表示是正常值。
data = df[['price_usd''srch_booking_window''srch_saturday_night_bool']]
scaler = StandardScaler()
np_scaled = scaler.fit_transform(data)
data = pd.DataFrame(np_scaled)
# 训练 oneclassSVM 模型
model = OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.01)
model.fit(data)
 
df['anomaly3'] = pd.Series(model.predict(data))
fig, ax = plt.subplots(figsize=(10,6))

a = df.loc[df['anomaly3'] == -1, ['date_time_int''price_usd']] #anomaly

ax.plot(df['date_time_int'], df['price_usd'], color='blue')
ax.scatter(a['date_time_int'],a['price_usd'], color='red')
plt.show();

从上图可知,使用OneClassSVM预测的异常值,它们的价格大多位于价格区间的最高点或最低点处。

基于高斯概分布的异常检测

高斯分布也称为正态分布。它可以被用来进行异常值检测,不过我们首先要假设我们的数据是正态分布的。不过这个假设不能适应于所有数据集。但如果我们做了这种假设那么它将会有一种有效的方法来发现异常值。

Scikit-Learn的EllipticEnvelope[10]模型,它在假设我们的数据是多元高斯分布的基础上计算出高斯分布的一些关键参数过程。过程大致如下:

  • 根据前面定义的类别创建两个不同的数据集 :search_Sat_night和Search_Non_Sat_night。
  • 在每个类别应用EllipticEnvelope(高斯分布)。
  • 我们设置contamination参数,它表示我们数据集中异常值的比例。
  • 使用decision_function来计算给定数据的决策函数。它等于移位的马氏距离[11](Mahalanobis distances)。异常值的阈值为0,这确保了与其他异常值检测算法的兼容性。
  • 使用predict 来预测数据是否为异常值(1 正常值, -1 异常值)
df_class0 = df.loc[df['srch_saturday_night_bool'] == 0'price_usd']
df_class1 = df.loc[df['srch_saturday_night_bool'] == 1'price_usd']

envelope =  EllipticEnvelope(contamination = outliers_fraction) 
X_train = df_class0.values.reshape(-1,1)
envelope.fit(X_train)
df_class0 = pd.DataFrame(df_class0)
df_class0['deviation'] = envelope.decision_function(X_train)
df_class0['anomaly'] = envelope.predict(X_train)

envelope =  EllipticEnvelope(contamination = outliers_fraction) 
X_train = df_class1.values.reshape(-1,1)
envelope.fit(X_train)
df_class1 = pd.DataFrame(df_class1)
df_class1['deviation'] = envelope.decision_function(X_train)
df_class1['anomaly'] = envelope.predict(X_train)

df_class = pd.concat([df_class0, df_class1])
df['anomaly5'] = df_class['anomaly']
fig, ax = plt.subplots(figsize=(106))
a = df.loc[df['anomaly5'] == -1, ('date_time_int''price_usd')] 
ax.plot(df['date_time_int'], df['price_usd'], color='blue')
ax.scatter(a['date_time_int'],a['price_usd'], color='red')
plt.show()

从上图可知,使用EllipticEnvelope[12]预测的异常值,它们的价格大多位于价格区间的最高点处在最低点处没有出现异常值。

到目前为止,我们已经用四种不同的方法进行了价格异常检测。因为我们的异常检测是无监督学习。在构建模型之后,我们不知道他们的异常检测效果怎么样,因为我们没有办法可以对他们进行测试。通常异常检测只有在实际的应用场景中才能测试出它的效果。

来源:新机器视觉



申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566


评论
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 86浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 75浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 46浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 69浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 109浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 36浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 85浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 49浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 110浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 43浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 63浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 86浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦