超浸润电解液工程助力电池超级快充

锂电联盟会长 2024-03-12 11:59
点击左上角“锂电联盟会长”,即可关注!



  


研究背景
锂离子电池(LIBs)已经成为普遍存在于便携式电子设备和电动汽车(EVs)中的主流储能技术。尽管LIBs得到了广泛的应用和相关的优势,但它们在循环稳定性、安全性和快速充电能力方面仍面临着显著的挑战。这些挑战主要源于石墨负极上固体电解质界面相(SEI)层的形成,石墨是商业LIBs的主要负极材料,因为其具有成本效益和低电位(~0.1 V vs. Li/Li+)用于锂的嵌入/脱出反应。SEI是由负极/电解质界面处电解质组分的不可逆分解形成的,是维持负极的电化学稳定性和防止过度电解质消耗的关键组成部分。此外,SEI层还促进了锂离子在界面上的传输。然而,不理想的SEI层对石墨负极会产生负面影响。这主要有两个原因。首先,由于电解质/电极界面的润湿性差,SEI可能无法完全覆盖石墨。其次,SEI的组分可能不稳定。这两种现象都会导致锂离子的不均匀输运,充放电循环过程中SEI的反复重构,锂不可逆地损失,以及界面电阻的增加。这些缺点显著影响了电池的循环寿命、快速充电能力,同时可能带来的安全风险,如枝晶形成和火灾危险。因此,调控和优化石墨负极上的SEI层对于提高LIBs的性能和安全性至关重要。而传统的电解质工程方法受到粘度增加、润湿性降低和成本高的限制。


  


成果简介
近日,上海交通大学万佳雨教授团队和南方科技大学刘科教授、罗光富教授、邓永红教授等合作,提出了一种通用的电池界面工程的分步注液策略,该策略利用二次注液,首先使用超低浓度的超润湿电解质达到实现石墨负极上 SEI 层的均匀且完全覆盖。该电解质在低电流形成过程中会引起较高过电位,从而形成富含无机成分的 SEI 层。因此,采用超湿润电解质的锂离子电池表现出卓越的循环稳定性和 5 C 的高倍率性能(容量为 166 mAh g-1),这一特性在软包电池中也得到了验证。这种分步注液,同时利用低浓度电解质诱导高过电位。相关文章以“Superwettable Electrolyte Engineering for Fast Charging Li-Ion Batteries” 为题发表在《ACS Energy Letters 》(IF: 22.0)期刊上。


  


图文解析
图1. 不同浓度电解质下石墨电极上SEI层的形成示意图:(a)正常浓度电解质,(b)超低浓度电解质。不同浓度电解质在(c)PE隔膜和(d)石墨片表面的接触角测量。

接触角测试证明超低浓度电解液对聚乙烯隔膜具有极佳润湿性,形成SEI时有利于微观均匀性。1 M电解液表现出较高粘度,与0和0.02 M电解液相比,渗透速率明显较慢。优异的超亲液性有助于确保电池的出色电化学性能。

图2. (a)不同化成模式下LIBs石墨负极中SEI层形成的示意图和(b)不同浓度电解质下SEI层形成的示意图。不同电位下(c)1 M和(d)0 M浓度电解质负极的非原位XRD图。
         

 

超亲液性确保SEI均匀性,但想在传统电解液中形成富含无机SEI面临挑战。富含无机组分的SEI具有更高的稳定性,高过电位能够利于无机组分SEI的生成,但在正常浓度的电解液中,大的电位也意味着过大的电流,这可能会导致SEI形成不均匀,这对后续循环是不利的。而化成过程中使用超低浓度电解液可以产生明显的过电势,有利于富含无机组分SEI的形成, 同时又能维持很小的化成电流,保证SEI的均匀性。 
   
图3. 不同浓度电解质化成的Li||graphite电池的电化学性能。(a)使用0, 0.02, 和1 M电解质化成的Li||graphite半电池的初始循环伏安图。(b)用CC–CV(0.2 C到0.01 C)制式测得的0, 0.02, 和1 M电解质化成电池的初始放电–充电曲线。(c)在0.5 C倍率下半电池的循环性能。(d)半电池的倍率性能。(e)不同浓度电解质化成后循环前电池的Nyquist图。

比较使用超低浓度电解液和常规电解液化成的石墨阳极的电化学性能。结果显示,超低浓度电解液化成的电池表现出更高的循环稳定性,CV曲线和电压曲线验证了化成的充分性和超低浓度电解液化成电池的良好的动力学性能。在0.5 C的循环稳定性测试中,超低浓度电解液化成的电池表现出色,而1 M电解液化成的电池在100个循环后容量急剧下降,仅保持44.7%。快速充电性能测试表明,超低浓度电解液电池在高倍率下表现出更高的比容量,且电化学阻抗谱分析证实其更快的锂化和脱锂动力学。这些发现表明,使用超低浓度电解液有望在锂离子电池中实现更高的性能。

图4.  a)0 M,(b)0.02 M,和(c)1 M电解质中化成的循环后石墨负极的SEM。(d)石墨负极的相应O 1s XPS光谱。(e)基于XPS拟合结果的石墨负极上无机组分的含量。(f)石墨负极上EC可能的分解反应。(g)图f中三个反应的吉布斯能量随电位的变化。

进行循环后分析,以了解Li||石墨电池在不同电解液浓度下化成条件的循环性能。图4a-c和图S9中的光学和扫描电子显微镜(SEM)图像描述了经过200次循环后石墨阳极的状态。使用0和0.02 M电解液化成的电极呈均匀的黄色,表明石墨中锂化一致充分;而使用1 M电解液形成的电池呈锂不足的蓝色,中心有明显的锂沉积。石墨阳极的电化学性能主要取决于界面电阻,包括材料(Rct)和SEI界面阻抗RSEI。RSEI受SEI的化学成分影响。为了研究SEI的化学组成,进行X射线光电子能谱(XPS)Ar+溅射深度剖面分析。O 1s谱用于确定SEI中有机物种的组成,通过计算Li2O和C–O含有物种的原子比,确定了不同形成条件下阳极上Li2O和C–O含有物种的原子比。这些观察表明,使用超低浓度电解液化成有利于在石墨表面形成富含无机成分的SEI,从而提高电池的稳定性。

图5. 不同浓度电解质下室温下石墨||NCM811全电池的比较电化学性能。(a)0, 0.02, 和1 M电解质下的形成曲线。(b)在0, 0.02, 和1 M电解质化成后在0.2 C倍率下的充放电曲线。全电池的(c)倍率性能和(d)1 C倍率循环性能。(e)全电池在4 C充电倍率下的循环性能。

通过对全电池进行长周期循环测试,发现使用0和0.02 M浓度的电解液化成的电池在2.5 - 4.25 V范围内表现出更高的初容量,分别为201和190 mAh g–1,并在300个循环后分别保持在76.6%和75.6%。相反,1 M浓度电解液的电池表现出较低的初始容量和66.1%的保持率。通过Nyquist图和SEI电阻变化分析,证明了低浓度电解液化成的电池SEI电阻较低,对4 C快速充电的适应性更好。此外,使用超低浓度电解液的电池在300个循环后仍然保持了89%的比容量,而1 M电解液的电池则仅为128 mAh g–1循环后SEM图像显示,超低浓度电解液化成的石墨阳极形态良好,无析锂现象,而1 M电解液则存在析锂现象。这一研究为锂离子电池性能优化提供了有益信息。

文章链接
Superwettable Electrolyte Engineering for Fast Charging Li-Ion Batteries
https://pubs.acs.org/doi/full/10.1021/acsenergylett.3c02572


  


作者介绍
万佳雨
上海交通大学溥渊未来技术学院副教授,博士生导师。于2016-2021年在美国斯坦福大学进行博士后研究,合作导师为美国科学院院士Yi Cui教授与中国科学院、美国工程院等三院院士Zhenan Bao教授。2016年在美国马里兰大学获得博士学位,师从马里兰大学冠名讲席教授Liangbing Hu;2011年本科毕业于华中科技大学。研究方向主要为储能材料与器件、先进制造等。到目前为止,已在能源和材料领域的国际著名学术期刊如Science, Nature Nanotechnology, Nature Energy, Nature Water, Nature Comm等发表SCI论文80余篇,总被引用超过11000次,H因子48。研究成果被多家海内外知名媒体撰文报道。曾获得美国真空协会全美博士研究生奖“Dorothy M. and Earl S. Hoffman Award”(全球每年一名)、中国留学基金委颁发的“国家优秀自费留学生奖学金”等。曾担任美国化学学会秋季年会分会场主席、受邀担任中华环保联合会绿色供应链专业委员会特聘专家,以及Materials Today Energy, Carbon Energy, eScience, Sustainable Materials, Rare Metals杂志青年编委。与国内外多所高校同行拥有良好合作关系,受邀在斯坦福大学、美国东北大学、南洋理工大学、香港中文大学等科研院校、国际会议、及平台等做学术报告70余次。

课题组网站
https://www.x-mol.com/groups/deepenergy


  


招聘
课题组招聘         

 

1.招聘博士后多名        

 

招聘要求:
1. 具有机械、材料、电子、物理、化学等相关专业理工科博士学位;有固态电池、二次电池、陶瓷材料、电化学、电催化或相关方向研究经验的应聘者择优考虑;
2. 具有扎实的实验理论基础与操作能力,严谨的科学思维与良好科研习惯,较强独立开展科研工作能力和一定的实验室管理经验;
3. 具有良好的英文听说读写能力,并能够独立撰写英文文章;博士期间在国际期刊发表SCI论文者优先考虑;
4. 拥有职业操守,追求上进并有良好的团队协作精神;近期可到岗者优先考虑。

岗位职责:
1. 与课题组成员共同制定研究计划,相对独立地开展课题研究并发表具有国际影响力的研究成果;    
2. 协助课题组经费申请,积极以负责人身份依托课题组申请博士后科学基金、国家自然科学基金委青年项目及其他国家、省、市各级课题;
3. 协助指导博士、硕士、本科生;
4. 协助课题组建设和管理。

岗位待遇:
1. 基本年薪不低于30万元(面议,另根据工作表现和研究情况发放绩效奖励);支持申请上海市“超级博士后”计划,获得资助后年薪38万以上;海外博士后待遇面议。
2. 可申请上海交大配套的博士后公寓,子女可上交大幼儿园或附属小学;
3. 按照上海市和上海交通大学的博士后管理政策办理有关落户事宜,享受社会保险、公积金等福利待遇,博士后出站留上海工作,配偶及子女可随迁落户;
4. 其他福利按上海交大规定执行(http://postd.sjtu.edu.cn/index.htm);
5. 如有其他个人要求可面议,待遇从优。
博士后出站前景:
对于优秀的出站博士后将积极推荐协助其申请上海交通大学助理研究员岗位/国内外其他高校与院所科研教学岗位;或推荐赴世界著名大学(如斯坦福大学、加州大学洛杉矶分校、马里兰大学、南洋理工大学等)继续深造。
        
2.访问学生及学者招聘
课题组长期欢迎访问学生(联合培养)与访问学者加盟。
招聘要求:
1. 具有机械、材料、电子、物理、化学等相关学科背景;有固态电池、二次电池、陶瓷材料、电化学、电催化或相关方向研究经验的应聘者择优考虑;
2. 具有扎实的实验理论基础与操作能力,严谨的科学思维与良好科研习惯,较强独立开展科研工作能力;
3. 具有良好的英文听说读写能力,并能够独立撰写英文文章;发表过SCI论文者优先考虑;
4. 拥有职业操守,追求上进并有良好的团队协作精神。

应聘方式
应聘者请将个人简历,含学习和工作经历、发表论文、推荐人联系方式、或者其他证明工作能力的材料整合为单个PDF文件,发送至邮箱 wanjy@sjtu.edu.cn。标题为申请职位+姓名+预计到岗时间。申请将严格保密,本招聘广告长期有效,欢迎邮件咨询。
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 25浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 150浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 26浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 33浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 26浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 31浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 28浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦