无需电感器的升压和逆变:电荷泵电源

摩尔学堂 2024-03-11 17:10

本文讨论电荷泵 DC/DC 转换器并介绍无电感器双极电源电路的设计。

设计低压电子设备的第一步是决定使用哪种类型的电源。基本上有两种选择:线性稳压器(LDO)或 DC/DC 转换器。如今,我们经常选择 DC/DC 转换器,因为开关模式电压调节通常比线性调节效率更高。(如果您想知道为什么我添加“一般而言”,请查看本文中标题为“效率问题”的部分。)

如果您像我一样,在决定需要 DC/DC 转换器后,您会立即开始对笨重的电路、复杂的组件选择、嘈杂的输出电压等产生怨恨。但请务必记住,典型的基于电感器的开关稳压器并不是唯一的选择。有一种完全独立的拓扑可以提供显着的优势,尽管它并不适合每种设计。

电感输出,电容输入

无电感器 DC/DC 转换器被称为“电荷泵”稳压器,因为它们使用开关定期将电荷“泵”到电容器上。我想你可以将其与手动充气缓慢漏气的轮胎进行比较。如果您打气速度足够快,轮胎就不会漏气,即使轮胎正在漏气,即使您没有持续注入新空气。泵入的空气就像输入电流,泄漏的空气就像负载电流,我猜轮胎压力有点像电压。通过充分的泵送(记住泵送=定期注入空气),您可以无限期地保持高轮胎压力并提供负载电流。

因此,首先要了解的是,电荷泵稳压器使用开关定期将电流从输入电源注入电容器。当输入开关打开时,第二组开关将电容器连接到稳压器的输出侧,以便它可以提供负载电流。另一个要记住的关键点是电容器的电压不会瞬时变化。因此,如果将其充电至 5 V,然后使用开关更改其连接,电容器两端的电压 (V CAP ) 仍将是 5 V。这就是电容器可以轻松用作倍压器的原因:

 

 

连接到输入时,V CAP为 5 V。连接到输出时,V CAP(初始)为 5 V。但请注意,输出侧的下部连接连接到 V IN,而不是接地。这意味着 V OUT必须比IN5 V ;换句话说,V OUT = 2V IN

您可以使用类似的技巧来反转输入电压:

 

 

这里,下部输出连接是V OUT并且上部输出连接接地。当输入开关打开且输出开关闭合时,V CAP = 5V,因此输出必须(最初)低于地电压 5V;换句话说,V OUT = –V IN

可以实现其他输入到输出关系,但这两个关系非常简单,此外,如果您从电荷泵稳压器开始,然后使用线性稳压器微调输出,它们可能就是您所需要的一切(这种方法还具有减少噪音的额外好处)。

优点和缺点

如果您有阅读我的文章的习惯,您可能会知道我对基于电感器的开关稳压器抱有不可避免的偏见,因此我的第一反应是宣称电荷泵稳压器普遍优越。然而,这完美地证明了当我们的结论基于偏见、恐惧或任性而不是合理的推理时,人类会变得多么荒谬。电荷泵方法在某些应用中很有用,但在许多(或大多数?)情况下,基于电感器的开关将更可取。

优点

一般来说,电荷泵稳压器比同等的基于电感器的稳压器更小、更简单且更便宜。这个好处列表可能看起来不是很长,但请记住,尺寸、上市时间和成本是当今工程领域的重要因素,有时甚至是至关重要的因素。

缺点

电荷泵稳压器无法提供与基于电感器的稳压器一样多的输出电流。我不确定如何准确地量化这一点,但对于需要超过 50-100 mA 的负载来说,基于电感器的开关似乎是首选。此外,在某些应用中(尤其是那些需要高输出电流的应用),电荷泵稳压器的效率将低于基于电感器的等效电路的效率(尽管比 LDO 的效率要好)。

噪音

这两种类型的开关稳压器都比线性稳压器噪声更大。但其中一个比另一个更好吗?我的猜测是这个问题没有明确的答案,仅仅是因为影响噪音的其他因素太多了。然而,我有一种感觉,基于电感器的稳压器往往更糟,至少在辐射噪声方面是这样,因为电感器更像是天线(除非它是屏蔽的,但屏蔽电感器更昂贵)。如果您有任何有关电荷泵开关与基于电感器的开关的噪声性能的信息,请在评论中告知我们。

结论

我想介绍这个主题,因为我最近设计了一个 5 V 至 ±5 V 电荷泵电源电路,可以将其作为子系统合并到您的下一个模拟或混合信号项目中。我使用 Linear Tech/Analog Devices 的 LTC3265:

 

该图取自LTC3265数据表。



4月11日-12日将在上海举办一期高级电源管理芯片设计课程,本课程将讲述电源管理电路中最常见的模块LDO和DC-DC的相关知识、设计技巧和前沿揭秘,包括模拟LDO,数字LDO,电感型DC-DC,电容型DC-DC和最近关注度很高的混合型DC-DC。

--点击图片即转至课程页面

--------------------

今天小编带来了:ISSCC2024套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。

ISSCC2024完整资料领取方式如下   

识别关注下方公众号
公众号对话框输入 2024 
由于公众号后台资料容量有限
每份资料有效期为30天,过期会被更新删除
资料仅供个人学习使用,禁止分享与转发!
大家如果需要,请及时下载!

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台


摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论 (0)
  • 职场烂摊子,每个人都难免遇上如果你在职场待久了,总会碰到一些让人无奈的情况:比如刚接手的项目混乱不堪、前任同事留下的任务一团乱麻,甚至有时因为自己的疏忽造成麻烦。面对这种烂摊子,烦躁、焦虑、甚至怀疑人生的情绪都会扑面而来。但如果你冷静想想,会发现真正消耗你的,往往不是工作本身,而是持续不断的心理内耗。那么问题来了,如何摆脱内耗,快速有效地“自救”?摆脱内耗,从情绪中抽离我曾经历过一个典型的职场烂摊子:前任项目负责人突然辞职,项目资料缺失严重,进度远远落后,客户抱怨不断。当时接手后的第一反应就是慌
    优思学院 2025-04-21 18:21 35浏览
  • 导读在智能汽车技术发展浪潮中,车辆控制系统的智能化、网络化已成为行业发展的必然趋势。虹科PEAK智行定位车控系统,集成了尖端科技,能够实现车辆全方位监控与控制。从实时GPS定位到CAN/CAN FD信号处理,虹科方案不仅提升了车辆的智能化水平,更在安全性和效率上迈出了革命性的一步。虹科PEAK智行定位车控系统,通过CAN/CAN FD信号实现车辆的精准控制,包括加减速、转弯、倒退等动作,模拟真实车辆平台的动态表现。该系统搭载了虹科各型号设备,通过紧密协作,实时反映车辆位置、总线报文等信息,实现车
    虹科汽车智能互联 2025-04-21 16:04 79浏览
  •   有效数据智能分拣系统平台深度解析   一、系统概述   北京华盛恒辉有效数据智能分拣系统平台融合人工智能、机器视觉、物联网及大数据分析技术,为物流包裹、数据信息等提供高效精准的智能化分拣处理方案。通过自动化设备与智能算法协同运作,取代传统人工分拣模式,显著提升分拣效率、降低错误率,满足电商、快递及供应链不断增长的业务需求。   应用案例   目前,已有多个有效数据智能分拣系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效数据智能分拣系统。这些成功案例为有效数据智能分
    华盛恒辉l58ll334744 2025-04-21 16:22 124浏览
  •   有效数据智能分拣系统详解   北京华盛恒辉有效数据智能分拣系统融合人工智能、大数据分析与机器学习等前沿技术,实现海量数据自动化分类、筛选、整理及分配。凭借强大的数据处理效能,助力企业精准提取关键信息,优化决策流程,提升运营效率。以下从系统架构、核心功能、技术特性、应用场景及发展趋势展开解读。   应用案例   目前,已有多个有效数据智能分拣系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润有效数据智能分拣系统。这些成功案例为有效数据智能分拣系统的推广和应用提供了有力支持。
    华盛恒辉l58ll334744 2025-04-21 16:46 110浏览
  • 导读在汽车测试和现代工业领域,功耗控制与效率优化是工程师们不断追求的目标。虹科PCAN Router系列设备以其卓越的性能和灵活性,为CAN/CAN FD网络中的报文转换提供了高效解决方案。本文将探讨虹科PCAN Router系列设备如何在保持高效工作的同时,通过低功耗模式和高效唤醒功能,满足对能耗有严格要求的应用场景。虹科PCAN Router系列网关1 低功耗模式的优势与实现在实际的工作场景中,可能会出现一些对功耗要求存在限制的情况。鉴于此,可以灵活设置虹科PCAN Router系
    虹科汽车智能互联 2025-04-21 15:45 72浏览
  •   北京华盛恒辉机场保障能力评估系统软件深度解析   在航空运输业快速发展的背景下,机场保障任务愈发复杂,传统人工评估方式已无法满足高效精准的管理需求。机场保障能力评估系统软件作为提升机场运行效率、保障飞行安全的关键工具,其重要性日益凸显。   应用案例   目前,已有多个机场保障能力评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润机场保障能力评估系统。这些成功案例为机场保障能力评估系统的推广和应用提供了有力支持。   一、系统功能模块   数据采集与整合模块  
    华盛恒辉l58ll334744 2025-04-22 10:28 53浏览
  • 在消费金融的赛道上,马上消费曾是备受瞩目的明星企业。自2015年成立以来,它以年均 30% 的净利润增速一路狂奔,成为持牌消费金融公司的标杆,2023年更是斩获19.82亿元净利润,风光无限。然而,2024年却成了马上消费的一道分水岭。2024年上半年,其营收为77.38亿元,同比下降2.11%;净利润更是同比骤降20.66%,仅为10.68亿元,创下历史最大跌幅 。与此同时,不良贷款率攀升至2.5%,不良余额高达16.54亿元,核心资本充足率降至12.72%,融资
    用户1742991715177 2025-04-21 21:29 68浏览
  • 引言:老龄化社会的健康守护需求随着全球老龄化进程加速,老年人的健康管理与生活质量成为社会焦点。记忆衰退、用药混乱、日程遗漏等问题频发,催生了智能健康设备的市场需求。WTR096录音语音芯片,凭借其高度集成的录放音、计时时钟与计划管理功能,为老年人量身打造了一站式健康管理方案,重新定义智能语音时钟的价值。功能亮点:1. 用药安全守护:多维度提醒,拒绝遗忘多时段精准提醒:支持一天内设置多个用药时间(如早、中、晚),适配复杂用药需求。个性化语音定制:家属可录制专属提醒语音(如“上午9点,请服用降压药”
    广州唯创电子 2025-04-22 08:41 70浏览
  • 引言:工业安全与智能化需求的双重驱动在工业安全、环境保护及家庭安防领域,气体泄漏引发的安全事故始终是重大隐患。随着传感器技术、物联网及语音交互的快速发展,气体检测报警器正朝着智能化、低成本、高可靠的方向演进。WT588F02B-8S语音芯片,以“离在线语音更换+多协议通信”为核心优势,为气体检测报警器提供了一套高效、灵活的低成本语音解决方案,助力开发者快速响应市场需求。产品功能与市场需求1. 核心功能:从监测到预警的全流程覆盖实时气体监测:支持一氧化碳、臭氧、硫化氢等多种气体浓度检测,精度可达p
    广州唯创电子 2025-04-22 09:14 28浏览
  •   海上安全事件应急处置系统解析   北京华盛恒辉海上安全事件应急处置系统是为应对船舶碰撞、火灾等海上突发事件打造的综合管理体系,通过技术与协同机制,实现快速响应救援、优化资源配置,守护海上生命、财产与环境安全。以下从系统构成、功能、技术、应用及趋势展开阐述。   应用案例   目前,已有多个海上安全事件应急处置系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润海上安全事件应急处置系统。这些成功案例为海上安全事件应急处置系统的推广和应用提供了有力支持。   一、系统构成
    华盛恒辉l58ll334744 2025-04-21 15:50 76浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,深耕电子元器件领域数十载,专为汽车与工业客户提供车规级安全芯片及配套服务。公司整合硬件供应、软件SDK与技术支持为一体,配备专业团队提供选型咨询与现场指导,助力客户实现完整的芯片应用解决方案。在全球芯片供应链重构的大背景下,我国车规级芯片产业正迎来前所未有的发展机遇。北京贞光科技有限公司作为紫光同芯授权代理商,深耕电子元器件领域数十载,专为汽车与工业客户提供车规级安全芯片及配套服务。公司整合硬件供应、软件SDK与技术支持为一体,配备专业团队提供选型咨询
    贞光科技 2025-04-21 16:10 98浏览
  •   北京华盛恒辉基于GIS的电磁态势可视化系统软件是将地理空间信息与电磁态势数据相结合,通过图形化手段直观展示电磁环境态势的系统。这类软件在军事、通信、无线电管理等领域具有广泛应用,能够辅助用户进行电磁频谱分析、干扰监测、态势研判和决策支持。以下是关于此类系统的详细介绍:   应用案例   目前,已有多个电磁态势可视化系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁态势可视化系统。这些成功案例为电磁态势可视化系统的推广和应用提供了有力支持。   一、系统功能   电磁
    华盛恒辉l58ll334744 2025-04-22 11:44 42浏览
  • 在汽车行业的变革浪潮中,智界汽车的诞生备受瞩目。作为华为与奇瑞两大巨头携手合作的结晶,智界汽车自孕育之初便承载着众人的期待,被视为融合前沿科技与卓越制造的典范,有望在竞争激烈的新能源汽车市场中开辟出一片新天地。2024年,智界品牌首款车型智界S7正式上市,凭借华为的技术赋能,如先进的鸿蒙智能座舱、强大的HUAWEI ADS高阶智能驾驶辅助系统,以及奇瑞多年积累的深厚造车底蕴,在上市前赚足了眼球。智界S7的亮相,犹如一颗投入平静湖面的石子,激起了层层涟漪,消费者对其充满了好奇与期待,行业内也纷纷将
    用户1742991715177 2025-04-21 20:28 55浏览
  • 导读在当今快速发展的智能通讯领域,时间敏感网络(TSN)已成为确保网络通信高可靠性和低延迟的关键技术。IEEE 802.1 Qci作为TSN的一个重要组成部分,提供了一套强大的机制来管理网络流量,确保关键数据流的优先级和带宽得到保障。本文将深入探讨IEEE 802.1 Qci协议的基本概念、工作原理以及虹科提供的Qci解决方案,帮您理解如何通过精确的流量控制来提升网络的稳定性和效率。虹科TSN解决方案01# 技术简介时间敏感网络(TSN)通过IEEE 802.1 Qci标准定义了一种关
    虹科工业智能互联 2025-04-21 16:17 94浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦