AI训练,为什么需要GPU?

原创 无线深海 2024-03-10 23:14
随着由ChatGPT引发的人工智能热潮,GPU成为了AI大模型训练平台的基石,甚至是决定性的算力底座。为什么GPU能力压CPU,成为手可热的主角呢?
要回答这个问题,首先需要了解当前人工智能(AI,Artificial Intelligence)的主要技术。

    人工智能与深度学习

人工智能是一个历史非常长的学科。自上世纪50年代以来,在多个技术方向上进行过探索,也经历过多次的高潮和低谷。想了解更基础更有趣的人工智能介绍,可以看下面这篇文章:人工智能来了,小心你的饭碗不保
人工智能在早期诞生了一个“不甚成功”的流派,叫做“人工神经网络”。这个技术的思路是,人脑的智慧无与伦比,要实现高级的人工智能,模仿人脑就是不二法门。
人脑是由数以亿计的神经元组成。这些神经元彼此连接,形成了庞大而复杂的神经网络。婴儿的大脑是一张白纸,经过后天的学习便可实现高度的智能。
参考人脑神经元,人工神经元模型就被设计了出来。
在上图右侧的人工神经元里,通过调整每个输入的权重,经由神经元计算处理之后,便可得出相应的输出。这里面的每个权重,就被称作一个参数。
把这样的多个神经元相互连接形成网络,就是人工神经网络了。人工神经网络一般由输入层、中间的多个隐藏层以及输出层组成。
这样的人工神经网络就像婴儿的大脑一样空空如也,必须给它投喂大量的数据,让它充分学习才能形成知识,才能用于实际解决问题。这个过程就叫做“深度学习”,属于“机器学习”的子集。
以常见的“监督学习”为例,给AI投喂的数据必须包含问题和答案。比如说,我们的目标是让AI判断图片里面是不是有一只猫,那就需要给AI大量确定有猫的图片并给出猫的特征,让它自己从中找规律。
首先AI拿出一张给定的图片,采用初始权重得出自己的结论。然后比较这个结论和正确答案到底相差了多少,再返回去优化参数权重,这个过程循环进行,直至AI给出的结果和正确答案最为接近。
这个学习的过程就叫做训练。一般来说,需要给AI大量含有正确答案的数据,才会得出比较好的训练结果。
一旦我们认为训练完成,就拿出试试成色。如果我们给它未知的问题,它也能很好地找出答案,就认为训练是成功的,AI的“泛化效果很好。
如上图所示,从神经网络上一层到下一层,参数权重的传递,本质上就是矩阵的乘法和加法。神经网络参数的规模越大,训练时需要的这些矩阵的计算也就越大。
最先进的深度学习神经网络可以有数百万到超过数万亿个参数,它们还需要大量的训练数据来实现高精度,这意味着必须通过正向和反向传递运行惊人的输入样本。由于神经网络是由大量相同的神经元创建的,因此这些计算本质上是高度并行的。
如此大规模的计算量,用CPU还是GPU好呢?
    CPU,擅长控制的管家
我们先说CPU(Central Processing Unit)。
此物可谓电脑的大脑,是当仁不让的核心中的核心。
CPU内部主要包含运算器(也叫逻辑运算单元,ALU)和控制器(CU),以及一些寄存器和缓存。

数据来了,会先放到存储器。然后,控制器会从存储器拿到相应数据,再交给运算器进行运算。运算完成后,再把结果返回到存储器。
在早期,一个CPU只有一套运算器、控制器和缓存,同一时间只能处理一个任务。要处理多个任务,只能按时间排队轮着来,大家雨露均沾。这样的CPU就是单核CPU。
后来,人们把多套运算器、控制器和缓存集成在同一块芯片上,就组成了多核CPU。多核CPU拥有真正意义上的并行处理能力。
一般情况下,多核CPU的核心数量少则2个4个,多则几十个。
在智能手机刚开始普及的时候,手机的外观趋同,其他地方也乏善可陈,厂家就大力渲染CPU的核数,史称智能手机的“核战”。
不过“核战”也就从双核烧到4核再到8核,然后大家也就都就偃旗息鼓了。芯片厂家也都是在这个核心数量上做优化。
为什么CPU不多集成一些核心呢?
这是因为CPU是一个通用处理器。它的任务非常复杂,既要应对不同类型的数据计算,还要响应人机交互。
复杂的任务管理和调度使得它需要更复杂的控制器和更大的缓存,进行逻辑控制和调度,保存各种任务状态,以降低任务切换时的时延。
CPU的核心越多,核心之间的互联通讯压力就越来越大,会降低单个核心的性能表现。并且,核心多了还会使功耗增加,如果忙闲不均,整体性能还可能不升反降。

    GPU,并行计算专家


下来再看GPU(Graphics Processing Unit)。
GPU叫做图形处理单元。其设立的初衷是为了分担CPU的压力,加速三维图形的渲染,常用于电脑的显卡。
图像的处理,正是一种针对矩阵的密集并行计算。从下图可以看出,左侧的图像由大量的像素点组成,可以很自然地表示成右侧的矩阵。
GPU一词从1999年Nvidia推出其GeForce256时开始流行,该产品对每一个像素点同时处理,执行图形转换、照明和三角剪裁等数学密集型并行计算,用于图像渲染。
为什么GPU善于承担密集的并行计算呢?这是因为GPU的在架构上和CPU有很大的不同。
CPU的核数少,单个核心有足够多的缓存和足够强的运算能力,并辅助有很多加速分支判断甚至更复杂的逻辑判断的硬件,适合处理复杂的任务。
相比之下GPU就简单粗暴多了,每个核心的运算能力都不强,缓存也不大,就靠增加核心数量来提升整体能力。核心数量多了,就可以多管齐下,处理大量简单的并行计算工作。

随着时间的推移,GPU也变得更加灵活和可编程,它的工作也就不局限于图像显示渲染了,还允许其他开发者用来加速高性能计算、深度学习等其他工作负载。
由于赶上了人工智能这样并行计算需求暴增的机遇,GPU一改以前的边缘角色,直接站到了舞台中央,可谓炙手可热。
GPU的名字,也变成了GPGPU,即通用GPU。
将AI训练这种并行性自然地映射到GPU,与仅使用 CPU 的训练相比,速度明显提升,并使它们成为训练大型、复杂的基于神经网络的系统的首选平台。推理操作的并行特性也非常适合在 GPU 上执行。
因此,由GPU作为主力所提供的算力,也被叫做“智算”。



延伸阅读:
人工智能来了,小心你的饭碗不保
— END —


无线深海 移动通信交流,无线通信发展趋势,最新动态,原创科普文章发表。
评论
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 106浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 122浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 108浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 84浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦