纳米金属粒子梯度掺杂的硅基近红外吸收增强结构

MEMS 2024-03-09 00:01

硅基光电子与CMOS工艺兼容,借助成熟的微电子加工工艺平台可以实现大规模批量生产,具有低成本、高集成度、高可靠性的优势。其中,硅基半导体探测器是目前应用最为广泛的可见光波段探测设备,将其工作频段拓展到近红外波段具有重要意义。由于硅的禁带宽度,硅基材料在近红外波段电磁波吸收存在明显限制,硅基探测器在近红外波段的应用受到挑战。

据麦姆斯咨询报道,近期,南京航空航天大学航天学院与安徽北方微电子研究院组成的科研团队在《红外与激光工程》期刊上发表了以“纳米金属粒子梯度掺杂的硅基近红外吸收增强结构”为主题的文章。该文章第一作者为孙雨佳,通讯作者为陈方舟副研究员。

本文根据纳米金属粒子发生局域表面等离子共振时产生的近场增强效应,提出了设计了一种硅基的、纳米金属粒子梯度掺杂的近红外波段吸收增强薄膜。通过等效介质理论计算了不同浓度下掺杂层的介电常数,模拟计算了薄膜在不同波长下的吸收率。结果表明:该设计可以有效提高硅的近红外波段吸收率,提升效果最高可达到10.7 dB。所提出的结构可以有效增强硅基材料在近红外波段的吸收效率,研究结果为硅基半导体探测器在近红外波段的应用提供了重要参考。

复合介质的研究方法

在按照需求设计具有特定功能的复合介质时,常使用等效介质理论来快速计算复合介质的等效电磁参数,这种方式大大提高了整个设计流程的效率。等效介质理论的思想是,当电介质中的掺杂物大小远小于入射波的波长,该复合材料就可以从宏观的角度分析其电磁特性,此时可以用准静态来近似。

当电介质中掺杂物的含量较低,微粒间的相互作用和更高的多级作用可以忽略, 此时通常采用Maxwell-Garnett理论(下面简称M-G)来计算复合介质的等效电磁参数。

根据银和金的折射率实验数据,可以拟合出它们的折射率曲线,如图1所示(图中点表示实验数据,线表示拟合结果)。然后,得到两种金属的介电常数。接下来可以得到Si掺杂Ag复合介质在可见光和近红外波段的等效介电常数。最后,将结果转换为复折射率,并与介质硅的复折射率进行对比,如图2所示。从图中可以看出,两者的主要区别为760 nm附近的波段范围,说明掺杂物对于复合介质电磁性能的影响主要发生在这个波段。掺杂对于复折射率实部的影响是,会在750 nm附近出现值剧烈的折射率变化,产生一个极大和一个极小值。掺杂对于复折射率虚部的影响是,会在760 nm附近产生一个峰值。

图1 金属的复折射率与拟合曲线。(a)银的折射率;(b)金的折射率

图2 Si掺杂Ag复合材料和硅的复折射率

梯度掺杂材料的结构设计

设计一种总厚度为1000 nm复合硅层,其中硅层被等分为20层,每层纳米金属粒子的掺杂浓度从0.25%开始以0.25%为梯度均匀增加直到5%,或从5%开始以0.25%为梯度均匀减少直到0.25%。选择银和金两种纳米金属粒子进行掺杂。结构示意图如图3所示(其中,(a)为浓度递增掺杂结构;(b)为浓度递减掺杂结构),示意图分别给出了顶部、中部和底部掺杂层,对其他掺杂层进行了适当的省略。

图3 梯度掺杂材料的结构示意图

图4为不同掺杂浓度下复合介质的等效折射率。可以看出,与未掺杂的介质硅相比,掺杂浓度越高,760 nm波长附近的介质等效折射率变化越明显。

图4 不同掺杂浓度的介质的等效折射率。(a)复折射率实部;(b)复折射率虚部

使用时域有限差分法(FDTD)来模拟计算复合介质在可见光和近红外波段的吸收。这里采用两种掺杂的方式,一种是从顶层开始掺杂浓度逐渐下降,另一种是从顶层开始掺杂浓度逐渐提升。仿真设置如图5所示。为了减少仿真时间,仿真区域设置为2D,如方框所示。上下的边界设置为PML边界,左右边界设置为Periodic边界,为了避免产生掺杂层厚度导致的法布里-珀罗谐振,将最后一层掺杂层延伸到仿真区域底部的边界以外。另外三个平行平面从上到下分别代表反射监视器、光源、透射监视器。其中光源选择垂直入射的平面波。

图5 仿真模型示意图

结果分析

硅基梯度掺杂结构的设计可以从两个方面进行考虑,一是对比不同掺杂方式的吸收提升效果,二是纳米金属粒子的选择。通过对仿真结果进行分析,从而得到最优解。选用梯度缓慢变化的掺杂方式是为了避免纳米粒子掺杂浓度过大引起折射率的变化,因为较大的浓度梯度会引起反射率的突变。在超材料的设计中,常选用金和银两种贵金属,将它们应用在可见光和红外波段往往会带来优异的性能。

掺杂方式的分析

首先选择纳米银粒子作为掺杂粒子。图6展示了纳米银粒子掺杂浓度递减、纳米银粒子掺杂浓度递增和未掺杂三种情况下复合介质的反射率、透射率和吸收率曲线。如图6(a)所示,递增掺杂对反射率的影响很小,仅在755 nm附近产生微小的波动。但递减掺杂的情况下,反射率产生很大的波动,在710 nm处存在一个极小值0.05,在760 nm处存在极大值0.9。图中同样给出了掺杂浓度为5% 和0.25%下介质复折射率的实部曲线,可以看出在430~1450 nm范围内,递减掺杂方式下的反射率曲线和掺杂浓度为5%的掺杂层的等效折射率曲线类似,在680~830 nm范围内,递增掺杂方式下的反射率曲线和掺杂浓度为0.25%的掺杂层的等效折射率曲线类似,表明反射率曲线的变化与复折射率实部的变化有关。反射发生在空气和顶层以及相邻层之间的界面上,而相邻层因为折射率相近,反射可以忽略。递减掺杂的情况下,顶层介质的掺杂浓度为5%,折射率实部相比于硅有较大的变化,所以反射率曲线也会随着折射率实部的变化趋势而发生较大的改变。相比而言,递增掺杂的情况下顶层的掺杂浓度为0.25%,折射率实部相比于硅只存在很小的变化,所以反射率曲线只会在折射率实部发生变化的波段范围产生微小的改变。另外,将复合介质设计成掺杂浓度缓慢变化的原因,是为了避免较大的折射率梯度导致强烈的反射。

图6 纳米银粒子掺杂材料的模拟吸收谱。(a)反射率;(b)透射率;(c)吸收率;(d)吸收提升效果

如图6(b)所示,在纳米银粒子递增掺杂方式下,复合介质可以在640~1110 nm 波段范围内降低透射率;在递减掺杂方式下,可以在660~1450 nm波段范围内降低透射率。另外,两种掺杂方式均可实现720~800 nm波段范围内透射率几乎为0。图中同样给出了掺杂浓度为5%和0.25%下介质复折射率的虚部曲线,可以看出:掺杂浓度为5%的介质折射率虚部的曲线相比于硅的变化范围和透射率为0的范围一致,并且两种掺杂方式下透射率为0的范围相同。这是因为折射率的虚部代表介质对电磁波的吸收能力,掺杂导致介质折射率的虚部曲线在720~800 nm波段范围内出现峰值,介质该波段内的吸收能力增强, 并且掺杂浓度越大导致折射率虚部曲线峰值越大,复合介质的吸收能力越强。梯度掺杂的复合介质吸收能力的增强程度由最大掺杂浓度决定,两种掺杂方式的最大掺杂浓度都为5%,所以,两种掺杂方式下复合介质吸收能力的增强程度一样,都可以在720~800 nm波段范围内实现0透射。而540~670 nm和840~1450 nm波段范围内两种掺杂方式下透射率的区别,主要是由该波段内反射率的差异造成的。

根据前面得到的反射率和透射率曲线,可以通过关系A = 1-R-T得到复合材料的吸收率曲线,如图6(c)所示。按照如下公式10log₁₀(A₂=A₁)(其中A₁、A₂分别代表未掺杂介质吸收率和掺杂介质吸收率)计算两种掺杂方式对吸收率的提升效果,计算结果如图6(d)所示。相比之下,递增掺杂的吸收提升效果更好,峰值为8.4 dB,而递减掺杂在750 nm处存在一个极小值0 dB。

掺杂金属的对比

选择吸收效果较优的递增掺杂方式(下文提到的掺杂均为递增掺杂),对比不同纳米金属粒子掺杂对介质反射率、透射率和吸收率的影响,如图7所示。从图7(a)可以看出,两种情况下的反射率差别不大,只是发生波动的范围不同,纳米银粒子掺杂下介质发生波动的范围在755 nm附近,金在820 nm附近,纳米金粒子掺杂下的介质反射率曲线发生波动的波长略大于银。由图7(b)可以看出,纳米银粒子掺杂可以在636~1120 nm范围内降低透射率,纳米金粒子掺杂可以在610~1450 nm范围内降低透射率,具有更宽的减透波段范围。

图7 不同纳米金属粒子掺杂材料的模拟吸收谱。(a)反射率;(b)透射率;(c)吸收率;(d)吸收提升效果

结论

文中基于等效介质理论,设计了一种纳米金属粒子梯度掺杂的复合材料,通过时域有限差分方法对复合材料的电磁效果进行仿真模拟,得到了复合材料在可见光和近红外波段的反射率、透射率和吸收率曲线。通过改变掺杂方式与金属材料的选择,总结出不同掺杂方式和纳米金属粒子对介质电磁特性的影响。其中效果最优的是纳米金粒子递增掺杂,可以有效提高硅基材料610~1450 nm波段的电磁波吸收效率,提升效果最高可达到10.7 dB。

论文链接:

DOI: 10.3788/IRLA20230519

延伸阅读:
《光谱成像市场和趋势-2022版》
《新兴图像传感器技术及市场-2024版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 143浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 79浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 185浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 114浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 54浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 178浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 65浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 99浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 94浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 104浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 134浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦