综述:用于体内传感与疾病治疗的宏观封装细菌研究进展

MEMS 2024-03-08 00:01
近年来,工程细菌作为生物传感、药物递送和疾病治疗的平台潜力受到了广泛关注。一方面,细菌作为药物具有独特的优势,包括连续性的药物生产和在深层组织中的穿透,这可以在没有大量初始药物负载的情况下增加局部治疗浓度,从而避免全身毒性的影响。另一方面,细菌的分子生物学和生理学表征充分,设计空间广泛,同时具有快速繁殖、易于储存和运输的特点,因此具有广阔的临床转化。

然而,目前工程细菌的临床应用仍然有限。首先,工程细菌容易受到体内恶劣条件的影响,如胃肠道的酸性和酶性环境,导致给药后细菌存活率显著降低。其次,位于细菌表面的抗原蛋白和细菌代谢物易触发免疫反应,导致过度炎症和宿主组织损伤。此外,定植抵抗和缺乏适当的生态位限制了细菌在靶向部位的植入从而降低了长期临床有效性。最后,虽然工程细菌可以通过对代谢产物和蛋白表达变化的响应作为生物传感器,但由此产生的生物发光信号通常较弱,无法直接传输到体外,因此限制了它们实时、原位的传感功能。

近期,浙江大学药学院南科望研究员、顾臻教授与麻省理工学院Robert Langer教授合作在Cell Press旗下期刊Matter发表了题为“Macroencapsulated bacteria for in vivo sensing and therapeutics”的综述性论文。浙江大学药学院硕士生吕一丹、浙江大学化学工程与生物工程学院博士生黄浩、浙江大学药学院本科生苏语嫣为论文第一作者,浙江大学药学院南科望研究员、顾臻教授,麻省理工学院Robert Langer教授为论文共同通讯作者。


该文章首次定义了宏观封装细菌(macroencapsulated bacteria)这一概念,展望了毫米到厘米尺度的宏观细菌封装系统用于治疗与诊断的发展前景。

宏观封装细菌设计原理

该综述将现有细菌封装系统分类为两种:微观封装和宏观封装。前者被定义为对单个细菌进行表面修饰,聚焦于对工程细菌进行基因表达调控和单细胞封装以提高细菌靶向能力和体内活性的方法。文章指出,大多数微观封装方法都是针对特定菌株的,缺乏大规模平台性应用的潜力,同时也带来不受限制增殖等安全性问题和缺乏主动向体外传输信号的能力。与此相对的是一种新兴的策略,这种策略将毫米至厘米级的工程装置与细菌相结合(或称 "宏观封装")。此方法利用水凝胶基质、微针和胶囊等载体,兼之电子设备,通过经皮、口服等途径协助细菌疗法,开创了下一代集成细菌设备。这种策略具有独特的优势,相比于微观封装系统,宏观封装系统具有平台性,与多种菌株兼容,并且使用经批准的材料和尺寸,降低了获得FDA批准的总体成本和负担。同时,其可携带性和与其他功能单元的系统集成也使其在可穿戴设备开发方面具有前景。无线电子组件的整合允许对细菌进行远程控制以及接收传感信号。此外,通过物理隔离来限制细菌扩散到组织中,宏观封装有利于治疗后的细菌清除,从而增强了细菌疗法的安全性。尽管有这些优势,宏观封装细菌的研究仍处于起步阶段,与微观封装的对比文献要少得多。

受到已有微观封装设计的启发,作者概述了一些宏观封装的可行设计标准、材料和组件。尽管目前主要还处于概念化和初步探索阶段,宏观封装可以提供更可控且其他方式不可用的功能,如隔离、驻留、导航和通信。

(1)保护与隔离:包装的最基本目的是保护细菌。对细菌的保护功能主要包括对不利环境(例如胃酸性环境)的抵抗和免疫攻击的回避。微观封装通过表面修饰、涂层和微胶囊来改善细菌的存活。宏观封装不仅能够提供保护,还提供了一个隔离环境,限制了细菌在包装装置外部的传递。

(2)靶向与导航:微观封装细菌通常保留了天然细菌的高运动性和趋化能力,以实现在特定身体部位的靶向积累。相比之下,宏观封装通过提供整体导航,即整个设备在外部控制下移动,类似于机器人。

(3)粘附与驻留:除了保持高细菌活力外,延长细菌在体内的物理存在也同样重要以确保其临床疗效。微观封装通常通过组织粘附来增强外来细菌的着生。类似地,宏观封装可以通过黏膜粘附来促进细菌在体内的驻留。

(4)附加功能:微观封装细菌的主要功能是治疗。而宏观封装不仅可以提供保护和隔离,还可以通过集成功能电子元件来实现其他功能,例如实时监测。

细菌封装系统的设计原理

体内应用

各种形式的细菌已经通过口服、皮下和肿瘤内途径发挥了传感和治疗效果。在各种给药途径中,宏观封装细菌主要应用于口服(可食用物)或表皮(可穿戴物)途径。与肿瘤内或静脉内注射的微观封装细菌相比,宏观封装细菌在肿瘤上的应用要少得多。这可能是因为宏观封装细菌失去了对肿瘤的致瘤性(自主运动),而这对细菌治疗的抗肿瘤疗效至关重要。然而,最近的研究已经使用宏观封装细胞治疗肿瘤,这可能暗示了细菌在肿瘤治疗中的潜在应用。

(1)可穿戴设备:由于侵入性极低、可控的移除性以及对生物发光信号的读取可及性,表皮和经皮途径成为细菌传感和治疗的研究重点。在这些应用中,宏观封装提供了便携式载体,用于保护、隔离和增强传感和治疗功能。对于可穿戴生物传感设备,生物相容性水凝胶显示出作为活性材料的理想基质的潜力。特定组成的水凝胶可以表现出高机械韧性和可拉伸性,这有助于制造与皮肤相符合的可穿戴设备。除了生物水凝胶外,工程细菌还可以沉积到特定材料上,包括乳胶、聚苯乙烯和棉花,形成生物复合膜。

(2)经皮药物递送:对于涉及细菌的经皮药物递送,主要的宏观封装形式包括水凝胶贴片和微针。细菌水凝胶贴片通常用于通过携带能够分泌治疗物质的细菌促进伤口愈合。这些贴片可能使用热响应性水凝胶控制凝胶化的时间,从而在室温下低黏度的凝胶在体表温度下发生相变,更好地粘附于皮肤并将细菌固定在内部。此外,还研究了光诱导交联,以在伤口处产生原位水凝胶网络。结合光动力抗菌性质的活性水凝胶系统也正在开发中。

不同给药途径常用的宏观封装细菌菌株及其应用

口服细菌定植

将细菌引入人体是第一步,而实现它们的传感或治疗作用则需要在体内实现长期有效的活体定植。成功的细菌活体定植通过适当的反应和分泌功能来证明,这取决于细菌的活性、定植能力和寄居时间。尽管许多报道的工程细菌是经口服给药的,但它们在到达小肠(胃肠道微生物最常见的植入部位)之前,会受到消化酶、胃酸和宿主免疫系统的攻击,这显著降低了它们的生命力和成功植入的机会。为解决这些问题,已经开发了各种基于材料的方法来保护活性物质和大分子,包括微马达、微囊和表面涂层。然而,在到达胃肠道中预期位置后,它们仍面临着多重挑战,如宿主微生物群的抵抗和肠上皮细胞的快速脱落时间,这进一步阻碍了长期植入。现有文献采取了多细胞封装、单细胞修饰、基因编辑、原生细菌、细菌交互等方式实现更长时间的细菌定植。

(A)口服细菌植入的不同方法;(B)不同方法下的细菌剂量和植入时间的比较

综上所述,细菌治疗在临床前研究中展现出令人鼓舞的成果,激励着越来越多的努力朝着商业化方向发展。然而,从这些成就向普遍被接受的临床产品的转变代表着一项艰巨的任务,需要解决关键挑战,如体内安全性、疗效、精确性和细菌治疗的可视化等问题。因此,细菌的宏观封装提供了一种通用且可控的解决方案,用于隔离细菌细胞以减轻免疫原性和毒性。然而,对这一途径的探索引入了新的挑战,包括宏观封装系统的安全性问题、加载细菌数量的限制以及需要减小整体设备尺寸的需求。

解决这些问题需要跨学科的合作。持续发展高度生物相容的生物封闭材料有望为这个方向提供新的视角。对工程细菌的基因编辑的进一步发现可以提供关于延长这些细菌的稳定性和存活性的见解。此外,利用微观封装方法所提供的几何形状和材料的设计自由度,可以为特定部位,包括肿瘤、皮肤和胃肠道的各个段落,创建定制的递送系统。

胃肠道是人体中最密集的微生物群落的寄主,通过口服途径容易进入。然而,由于恶劣的pH条件、持续的蠕动、上皮脱落以及对原生胃肠道微生物的耐受性,它也是最具挑战性的环境之一。将工程细菌与胃肠道保留系统(如新型可食用装置)整合起来,提供了克服胃肠道中上述挑战的潜在解决方案,使得治疗性小分子的连续、原位产生或胃肠道中长期生物传感成为可能。此外,通过遗传工程、表面修饰和使用酸性缓冲材料,可以进一步增强细菌在恶劣胃环境中的存活能力。例如,刘等人描述的方法涉及基于4-臂聚乙二醇马来酰亚胺的水凝胶的开发。当与碳酸钙共封装时,该系统表现出在低pH胃液中保护细菌存活能力的增强能力。

对于未来的应用,工程细菌有潜力通过基因工程提供适合的底盘,以整合传感和治疗能力,实现闭环治疗。因此,集成到宏观封装系统中的电子元件可以与这些细菌合作,提供额外的传感和控制功能。此外,外部响应的宏观封装系统的开发可以实现对细菌的远程操控,用于控制药物释放和治疗干预。这些协同集成代表了未来研究的有希望的方向,以构建一个动态的框架,用于检测生理信号、根据个体需求定制治疗,并远程和系统地指导治疗。

论文链接:

https://doi.org/10.1016/j.matt.2024.01.031


延伸阅读:

《即时诊断应用的生物传感器技术及市场-2022版》

《给药应用的微针专利态势分析-2020版》

《可穿戴技术及市场-2023版》

《水凝胶技术及市场-2022版》


MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 58浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 159浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦