特斯拉/比亚迪/华为电机技术大比拼?

电动车千人会 2024-03-07 15:10

点击上方蓝字关注我们吧





特斯拉/比亚迪/华为电机技术大比拼?











首先特斯拉3D6电机的转子采用经典的单V永磁结构,采用三分段的方式对噪音进行优化,中间分段是边缘的两倍。






之前介绍的比亚迪转子采用6段V型(中间粗的其实是2级,看上去只有5段,实际是6段)



这种错极设计我们之前讲过,但分段细致度包括鲁片却没有之前比亚迪和华为的转子那么细致。包括上一代特斯拉电机转子侧面的噪音优化辅助槽方面是做得非常细致的,分高低两种,其中大辅助槽放置在V字磁钢槽的表面磁桥处,小辅助槽放置在靠近极中心的地方。这次特斯拉3D6转子上我们暂时没发现之前那么细致的高低搭配,简化为单一半径的静音槽,结合同样比较简化的3分段设计来看,特斯拉整体细致度没有那两家那么好的。



光切定子肯定有人觉得不过瘾,没关系,咱们这一期为了更好展现技术细节,老王来到了线切割加工中心,咱们把电机转子轴都剖开看一看。



撰稿前老王在一些咨询机构报告中看到了上一代特斯拉电机轴,是油液先进入到中心,由突出部甩到内壁后,冷却油再从四个小孔喷出进行散热。


电机低效制热模式润滑油和热流量示意


这次切割后发现,特斯拉回归了和比亚迪华为一样的直通空心结构,油液进入端环之后,能立即给到转子两侧的甩油孔,给转子进行冷却,但仔细看还是没有比亚迪考虑那么细致,因为比亚迪的油道是可以流经永磁体两侧而特斯拉多数油液只能通过中间的减重孔,没有比亚迪那么直接,华为按理来说也可以做到和比亚迪一样的散热能力,只可惜用粘胶把油道填满了。不过整体三者都算是能对转子进行芯部冷却的电机。还是说得过去的。



另外关于特斯拉转子油道的这个设计变化,老王的猜测是一开始的轴芯突出部,应该是考虑到了油液搅动阻力,控制了喷油流量,所以冷却油的喷射点必须从中间开始以保证散热均匀,现在不需要,油液流量变大由一侧直接泵入即可。支撑这种观点的另一个依据在于原则上3D6电机的出现是为了配合特斯拉第四代热管理系统的,所以芯部设计老王猜测是增大了油液在电机内的流量以强化电机低效率制热模式的能力。



所谓低效制热模式,有时候我们也叫做电机堵转发热,发热效率远高于PTC。在这一点特斯拉之前设计比较保守,那么从轴芯的设计向比亚迪华为靠拢这一点来看,特斯拉应该是解决了油液在电机内大量喷射后的搅动阻力问题。像比亚迪和华为都是自己设计了低粘度润滑油才敢这么设计流量的,而特斯拉显然也察觉到了这种设计的甜头。当然这只是一种论述路径,电机的发展影响到的机械结构还是挺多的。   



之前其他咨询报告中显示上一代特斯拉电机采用芯部突出设计。



本次我们拆解切割后,发现三家都没有采用之前的突出甩油设计。



我们其实可以把电机的一些核心机械设计进行一个简单的横向对比。三台电机在永磁体排列和制备方面,比亚迪和特斯拉采用规则形状的烧结钕铁硼单块永磁磁钢,而华为虽然采用分块样式的永磁体但第二集中经过我们的测试它还是和普通单块永磁磁钢类似,在这个方面三台电机我们认为相差不大,三家电机只有特斯拉不是双V型排列的永磁体。    



叠片工艺方面比亚迪厚度最小,其余两家差别不大,都属于比较先进的加工工艺,其中比亚迪永磁体侧面固定点较多,其他两家较少。三家都有明显的装配扣点,涡流发热的挑战都不小。分段错极布局华为和比亚迪是6层,特斯拉是3层,这一点特斯拉略显简单。整体鲁片工艺水平三家差异不明显,比亚迪略优。定子扁线层数方面,特斯拉是10层,多于比亚迪,高功率输出下特斯拉占优,低转速城市路况比亚迪有一定优势。



华为DriveOne采用圆线电机也是强调高功率,整体效率不及比亚迪和特斯拉。这一块华为稍微落后一些。极对数方面,比亚迪采用8极72槽,华为和特斯拉都是采用6级54槽。



极对数和线圈槽数有大量评价维度,今后慢慢讲,本季讲一个技术点,就是永磁同步电机,多数都是正弦波交流驱动,但实际上接收的不可能是理想正弦波对吧?因为电机定转子之间有气隙,磁场有畸变,干扰输入到转子的电流电压。这之中存在大量高阶次谐波对电机运行产生影响,转化到用户身上就是噪音和振动。    



转子静止状态下一定总是倾向于停留在某些特定位置。因为定子开槽空间相对局限,转子磁极和定子开槽相对应的磁路,磁阻总有不平衡量,而磁力线不管你那么多,总会将转子拉到磁阻路径最小的位置。而当转子旋转时,永磁体两端对应的齿槽区域内磁场波动就会变得更大,这种感觉类似你开车不断压到减速带的感觉,这种力矩波动,我们称为齿槽转矩。



为此人们约定了一些评价因子,就是定子槽数和极数的最大公约数,以及最小公倍数。因为本次三台电机他们各自的槽数和极数都是能整除,所以评价因子就是他们自身转子的级数以及他们的槽数,最小公倍数自然就是槽数。比亚迪这里是8级72槽,特斯拉和华为都是6级54槽更低一些。这个数值越低,电机齿谐波次数就越高,齿槽波动越大,噪音和振动就不容易控制。



但按永磁同步电机转速公式来看,这种极对数较少,换来的是相对低的铁损系数,因为在多数转速区间,铁耗是和电机频率程正相关性。    



6磁极的华为特斯拉,在16000转运行频率估计和8极的比亚迪12000转左右的频率在一个级别,这也进一步解释了为啥比亚迪为什么把转子冲片做得这么精致的原因,就是为了尽可能优化铁损。    



像特斯拉和华为这样的54槽6极的电机,在这种格局下不妨就采用调大电流去推高转速和扭矩的路线,从用户角度更容易被接受。而比亚迪虽然电机控制系统不好做,但8级72槽的这个设计,相当于更多的电极一起并联出力。峰值扭矩提升相对会比较容易一些,而且想做高功率也不用傻傻的用大电流来硬打,加上之前我们说的比亚迪减速比是11左右也能够互为佐证,综合来看在性能指标方面都是指向节能和静音的。



冗余设计角度来说,三台电机峰值转速都有提升的余地,只不过可能没必要,尤其是比亚迪的16000转搭配10.8的减速比这种格局来说,老王认为比亚迪应该是考虑到更高的通用属性从而限制了峰值转速。这就好比当初刀片电池刚推出时,看起在能量方面仍然有提升空间,但通过技术创新和规模化之后,像特斯拉这种顶流公司都会考虑采购,这就是工程哲学的魅力。



另一方面,大电流的发热其实特斯拉人家也不怕,因为转子有芯部油冷,定子还有喷淋孔道,所以特斯拉才敢上9.3的减速比,而华为也不能只看圆线电机这种缺点,华为的优势是在逆变模块的可靠性方面做到完善的同时,用模块化的思维渗透到供应链的需求层面。举个不恰当的例子,比亚迪的电机有点像8缸发动机,平顺性好噪音也小,但为了省油油略微限制了运动挡。而特斯拉或者华为这个格局就是暴躁的小排量,相对容易控制,但有时候想跑快必须以能耗为代价。



总的来看,在机械设计这个维度,我们可以暂时下一个朴素的结论,就是特斯拉偏向运动,比亚迪偏向节能和静音。




来源:旺财电机与电控



-END-



千星奖评选开始报名啦~


2024年04月19-20日 | 中国·南京

EVH2024

第六届800V高速电驱动

及功率半导体峰会

EVH2024新能源电驱动协同·融合·创新年会

800V碳化硅部分议题(更新中...)

中国汽车工业经济运行情况

陈士华

中国汽车工业协会 副秘书长

高性能稀土永磁新材料研究进展

李卫

中国工程院院士

中国科学院宁波材料研究所钢研总院

稀土永磁材料联合研究中心主任

电机气隙磁场调制理论及其应用方法

程明

博士,教授、博士生导师

东南大学首席教授、博士生导师

IEEE Fellow,IET Fellow

圆桌: 新能源汽车驱动系统的

发展及前景

温旭辉

中国科学院电工研究所主任研究员

博士生导师、SAE和IEEE会员

长安双电数智电驱动系统开发

蒋平

重庆长安汽车股份有限公司

新动力研究院副总经理

EB549自粘结铁心的特点与

新能源汽车的应用

宋红杰

宁波鸿达董事长/高工

2023年度红旗电驱技术路线

王斯博

中国一汽研发总院新能源开发院

电机电驱动开发部部长

电驱产线开发的前沿技术

赞助商

半导体助力汽车电动化

王丽雯

英飞凌科技(中国) 汽车电子事业部高级总监

新能源汽车电气化开发重点及难点

曹红飞

上海EVK电机 联合创始人

总工程师

SiC MOSFET器件技术现状及

产品开发进展

黄润华

中国电子科技集团公司第五十五研究所副主任设计师

碳化硅封装技术剖析

周劲

罗姆半导体(上海)有限公司 技术中心副总经理

SiC功率模块在新能源汽车中的应用

郑刚

芯聚能 销售与市场部副总裁

特种聚合物在高压电驱动系统中的

创新应用

潘禹

苏威(上海)有限公司大中华区市场经理

圆桌会议:半导体开发过程讨论

雷光寅

复旦大学研究员

清纯半导体(宁波)有限公司首席科学家

东风“马赫E”电驱动系统发展简介

张经纬

东风汽车公司研发总院 电驱动设计总师

车规级功率半导体特色封装

与先进工艺

赞助商

供应商总经理

SiC功率器件技术发展、极限与挑战

李诚瞻

株洲中车时代半导体 研发中心副主任

新能源汽车SiC芯片封装与

电驱系统集成技术

刘朝辉

英国谢菲尔德大学博士

现任国家新能源汽车技术创新中心总师

动力系统业务单元负责人

SIC应用整体解决方案

赞助商

供应商总经理

功率半导体开发最新进展

周翔

恩智浦 电气化整体产品线总监

800V电气化时代的大数据开发现况

徐皞

汇川联合动力 预研技术总工



参会扫码报名



参会详情咨询

联系人:张晚晚

电话:13671990811




扫描二维码

关注电动车千人会

了解更多行业相关资讯


点击“阅读全文”报名参加年会

【免责声明】文章为作者独立观点,不代表电动车千人会立场。如因作品内容、版权等存在问题,请于本文刊发30日内联系电动车千人会进行删除或洽谈版权使用事宜

电动车千人会 电动车千人会(EVH1000)是电动汽车智慧出行一站式咨询交流服务平台,旨在通过业内千位专家的努力带动下,融合产学研、证推新技术、优整供应链、创提智造力,为推动汽车行业的蓬勃发展奉献力量。电动车千人会通过组局电动车相关的产业评选、行业会议、闭门沙龙、技术培训、技术咨询、出海行业对接等,以加快产业集群化落地及人才综合能力提升。
评论
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 89浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 89浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 109浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 247浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 94浏览
  • 从无到有:智能手机的早期探索无线电话装置的诞生:1902 年,美国人内森・斯塔布菲尔德在肯塔基州制成了第一个无线电话装置,这是人类对 “手机” 技术最早的探索。第一部移动手机问世:1938 年,美国贝尔实验室为美国军方制成了世界上第一部 “移动” 手机。民用手机的出现:1973 年 4 月 3 日,摩托罗拉工程师马丁・库珀在纽约曼哈顿街头手持世界上第一台民用手机摩托罗拉 DynaTAC 8000X 的原型机,给竞争对手 AT&T 公司的朋友打了一个电话。这款手机重 2 磅,通话时间仅能支持半小时
    Jeffreyzhang123 2025-01-02 16:41 160浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 106浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 134浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 181浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 126浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 132浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 144浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 200浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦