为推广智能网联汽车自主操作系统核心技术应用,从整车电子电气架构出发,分析了未来车用操作系统的发展趋势、技术架构和关键技术,同时结合整车制造商的应用需求提出了加快国产操作系统量产装车和生态建设的实施建议,以助力智能网联汽车自主操作系统产业化加速发展。
1 前言
随着车辆智能化、网联化技术的普遍应用,汽车产品与人工智能、网联服务等新兴技术深度融合,其电子电气(Electronic/Electrical,EE)架构也在不断演进,从分布式架构向集中式面向服务的体系结构(Service-Oriented Architecture,SOA)方向发展。这种变革的核心驱动力是整车制造商需要进一步提升集成开发效率,实现以软件为主的功能特性在车辆上的快速迭代。通过打造软硬件充分解耦的架构,专注于应用软件开发,可以支撑在不同车型上全生命周期的功能升级,持续提供差异化的应用和体验。整车EE架构的发展经历了3个阶段。
分布式架构时代,车用控制器专注于“单一”功能的实现,各电子控制单元(Electronic Control Unit,ECU)间的数据传递通过CAN、LIN等总线传输,如果整车需要增加新的功能,则需要在相应的控制器上修改通信信号,或者基于原有架构增加新的硬件。这种架构下软硬件紧密耦合,各控制器间无法共享计算能力,随着车辆功能的扩展,ECU数量增多,线束成本不断增加并增加了装配难度。
域集中式架构下,ECU 数量明显减少,整车大部分应用功能集中部署在几个核心域控制器中,将应用程序的不同功能单元进行拆分,通过设计良好的调用接口将这些服务联系起来,提供了功能的可扩展性[1]。该架构从面向信号的通信升级为面向服务的通信,支持算法灵活部署,实现了应用算法和硬件平台的分离。
在中央集中式架构下,原有架构中多个域控制器进一步整合成中央计算平台,实现算力集中化,EE架构通过新一代信息与通信技术将人、车、路、云的物理空间与信息空间融合为一体,基于系统协同感知、决策与控制,实现智能网联汽车交通系统安全、节能、舒适及高效运行,提升整车的性能和用户体验。
本文首先对车控、智驾和座舱操作系统的发展现状进行分析,对比分布式操作系统和集中式系统技术架构的特点,并从操作系统内核及虚拟化、中间件和集成应用方面对操作系统的技术发展趋势进行研究,然后,讨论国产操作系统生态发展现状,对当前存在的问题进行梳理,提出操作系统的应用需求,最后,从战略共识、合作模式和产业实践方面给出国产操作系统生态建设的实施建议。
2 车用操作系统技术发展趋势
2.1 车用操作系统发展现状
2.1.1 操作系统的分类
在应用需求和技术变革的驱动下,按照不同的应用场景,智能网联汽车操作系统逐渐发展为安全车控、智能驾驶和智能座舱3 类[2],各操作系统的特点如表1 所示。安全车控操作系统主要面向经典车辆控制领域,是运行于微控制单元(Microcontroller Unit,MCU)上的实时操作系统,汽车安全完整性等级(Automotive Safety Integration Level,ASIL)可达到D 等级,实时性好、控制精度高。智能驾驶操作系统主要面向智能驾驶领域,支持高算力异构系统级芯片(System On Chip,SOC),包含车规级操作系统内核,兼容自适应汽车开放系统架构(AUTomotive Open System ARchitecture,AUTOSAR)等国际主流中间件,具备多传感器数据的接入和大数据吞吐能力,同时满足自动驾驶所需的功能安全要求。智能座舱操作系统主要面向信息娱乐和数字仪表,为智能网联汽车提供人机交互服务,包括车载信息娱乐、网联、导航、多媒体娱乐、语音、辅助驾驶、人工智能(Artificial Intelligence,AI)等服务。
表1 智能网联汽车操作系统特点对比
2.1.2 安全车控操作系统
国外安全车控操作系统发展较早,有成熟的量产经验,主要基于经典AUTOSAR 技术方案。2003 年,宝马、博世、大陆、大众等9 家企业作为核心成员,成立了AUTOSAR组织,致力于建立标准化汽车软件平台,以减少车用软件设计的复杂度,提高开发效率[3]。目前,已有超过360家整车制造商、零部件供应商及相关企业与该组织建立合作伙伴关系,包括核心合作伙伴9 家、高级合作伙伴70家、开发合作伙伴80家、普通合作伙伴162家、高校和研究机构40家[4]。国内安全车控操作系统目前主要处于跟随状态,近年来,本土供应商发展迅速,具备支撑量产控制器开发的技术水平。安全车控操作系统适用于控制类和安全性要求较高的应用场景,如发动机、变速器等传统动力总成控制器,支持微秒级的实时调度和不同优先级的实时响应,确保关键应用程序确定性时延的需求,实现控制器对外围传感器、执行器的精确控制,保障了车辆的安全性。
2.1.3 智能驾驶操作系统
智能驾驶操作系统将会成为自动驾驶汽车发展的核心竞争力之一,目前,行业内普遍采用的底层内核主要有Linux和QNX操作系统:前者为自动驾驶算法提供丰富的开源生态,包含大量面向智能驾驶应用算法的三方库及中间件,但是硬实时无法保证,同时难以满足功能安全的要求;后者采用微内核架构,可满足自动驾驶对功能安全的认证要求,认证范围包括工具链、微内核、libc、libm和libsupc++库等。国内华为、中兴和斑马也都推出了自己的微内核及虚拟化组件,其中部分产品已量产应用,并在持续完善和加速推广中。为应对自动驾驶技术的发展,AUTOSAR 组织推出了自适应AUTOSAR架构,能够满足自动驾驶控制器并行计算和高速通信的应用场景需求,并为应用层提供了标准的调用接口[5],自适应AUTOSAR与经典AUTOSAR的技术特点对比如表2 所示。智能驾驶操作系统中还集成了高算力SOC 中的AI 驱动和面向自动驾驶算法的非标准中间件,该部分目前还有没有统一的定义,但是后续会围绕执行效率和接口统一进行优化。
表2 经典AUTOSAR与自适应AUTOSAR技术特点对比
2.1.4 智能座舱操作系统
在智能座舱操作系统领域,目前业内还没有统一的国际标准,主要包括QNX操作系统、诸多基于Linux的定制操作系统以及基于Android 开源项目的操作系统[6]。QNX 采用微内核架构,其驱动程序、网络协议、文件系统等模块和内核相互独立,任何模块的故障都不会导致内核崩溃。该系统在车载操作系统市场的占有率超过70%,在仪表端有大量应用,不过QNX的开放性不足,导致其应用生态缺乏。Linux 是一款开源、高效、灵活、功能强大的操作系统,其最大优势是具备很强的定制开发灵活度。Android 系统是基于Linux 内核开发的最成功的产品,其特点是开源、灵活定制、应用可移植性强和应用生态丰富。当前,特斯拉采用Linux 技术方案实现了车载操作系统开发。斑马、华为等国内企业积极布局车载操作系统,自研车载操作系统内核,并在逐渐建立应用生态。国内整车制造商纷纷基于Android进行深度定制化开发,推出自己的智能座舱操作系统。
2.2 整车操作系统技术架构
图1 操作系统分布式技术架构
2.2.2 操作系统集中式技术架构
在集中式架构下,整车大部分应用功能集中部署在异构大算力的中央计算平台上,功能软件之间通过操作系统及服务中间件进行交互。广义的操作系统分为系统层和功能层,其中系统层包括经典平台(Classic Platform,CP)及自适应平台(Adaptive Platform,AP)标准中间件、操作系统内核、虚拟化组件、板级支持包(Board Support Package,BSP)驱动和非标准中间件,功能层包括传感器、执行器的抽象、可复用的功能模块和基础服务,为应用层提供整车层级的服务接口,对芯片平台实现隔离[7],操作系统集中式技术架构如图2 所示。当前,国内外主流整车制造商均在集中式架构的操作系统上有所布局。2023年1月,奔驰推出自主设计的整车级操作系统MB.OS,其优势是可以全面打通车辆功能,包括信息娱乐功能、智能驾驶辅助及自动驾驶等功能。国内一汽、上汽、比亚迪等都通过战略合作、集成开发、自研等方式打造自主可控的操作系统平台,将操作系统作为核心竞争力进行布局。
图2 操作系统集中式技术架构
图3 手机操作系统市场格局演变[14-15]
3.3.2 创新合作模式
操作系统软件本身开发难度大,验证周期长,需要行业各方深度参与,构建产业链协同创新模式,共同繁荣汽车操作系统生态:
一是通过部署重大科技研发及产业化专项课题,推动操作系统、芯片、应用算法等上、下游生态体系协同发展,进行操作系统核心技术攻关。如行业共同研讨,基于某个确定版本的Linux 内核展开技术攻关与产品应用,形成完备的产业配套体系。
二是可由几个核心企业组建战略联盟,共同打造具有中国特色的车用操作系统基础平台,实现国产操作系统快速应用和迭代。国产操作系统企业与硬件芯片公司共同推出软硬一体的平台化技术方案,再由多个整车制造商在该平台上进行充分验证,缩短国产操作系统从研发阶段到量产应用的周期。
三是整车制造商与操作系统供应商构建新的合作模式,如在项目开发阶段不收取或者只收取开发授权费用(类似国外QNX 操作系统的收费方式),在量产应用阶段,根据实际售出的车辆数量收取费用。前期双方共担开发风险,在操作系统产品投向市场后兑现利润。
3.3.3 加强产业实践
加强产业实践是促进国产操作系统成熟度快速提升的关键,需要加快国产操作系统量产装车进度,形成操作系统技术的应用路径:
一是国家、地方提供国产车用操作系统量产补贴,补贴金额根据操作系统的类别和每台车上控制器的应用数量计算,以提高整车厂应用国产操作系统的积极性。
二是明确国产操作系统量产应用的实施路径,采取“小步快跑”的策略进行自主替代。当前车用操作系统的发展趋势明确,由分布式架构过渡到集中式架构,并逐渐融合统一。基于操作系统复杂度高的客观规律,可以在现有产品平台上按模块进行功能扩展和自主转化,加速推进国产操作系统在量产车型上的应用。
三是围绕集成验证进行自主操作系统的联合设计,整车制造商与操作系统企业开展深度战略合作,共同研发面向未来中央集中式架构的整车级操作系统,整车制造商专注于产品定义与架构设计、核心算法及中间件研发和系统集成验证,操作系统企业完成系统层软件开发,双方共同参与操作系统从设计到量产应用的全过程,共享产业协同成果,为国产操作系统量产应用和生态建设树立行业新范式。
参考文献
[1]头豹研究院.2022年中国新能源汽车产业系列研究报告:车载计算平台,智能驾驶落地关键支撑[R/OL].南京:头豹研究院,2022.https://www.leadleo.com/report/details?id=63059828ad61fd65bf1c427e.Head Leopard Research Institute.2022 China New Energy Automobile Industry Series Research Report: On-Board Computing PlatForm,Intelligent Driving Landing Key Support[R/OL].Nanjing: Head Leopard Study,2022.https://www.leadleo.com/report/details?id=63059828ad61fd65bf1c4 27e.
[2]全国汽车标准化技术委员会智能网联汽车分技术委员会.车控操作系统总体技术要求研究报告[R/OL].全国汽车标准化委员会,2022.http://www.catarc.org.cn/upload/202109/22/202109221130345380.pdf.Intelligent Connected Vehicle Sub-Committee of National Technical Committee of Auto Standardization.Research Report on Overall Technical Requirements of Vehicle Control Operating System[R/OL].National Technical Committee of Auto Standardization,2022.http://www.catarc.org.cn/upload/202109/22/202109221130345380.pdf.
[3]汪志鸿,于德营,马天泽,等.车用操作系统技术现状及发展趋势[J].汽车工程,2023,45(6):910-921.WANG Z H,YU D Y,MA T Z,et al.Current Status and Development Trends of Vehicle Operating System Technology[J].Automotive Engineering,2023,45(6): 910-921.
[4]AUTOSAR.AUTOSAR Introduction: Part 1-The AUTOSAR Partnership and Standardization[R/OL].Hörgertshausen,Germany: AUTOSAR,2023.https://www.autosar.org/fileadmin/user_upload/AUTOSAR_Introduction_PDF/AU -TOSAR_EXP_Introduction_Part1.pdf.
[5]潘妍,张也,周瑞坤,等.我国智能网联汽车操作系统研究[J].电子元器件与信息技术,2022,6(5):142-146.PAN Y,ZHANG Y,ZHOU R K,et al.Research on the Intelligent Connected Vehicle Operating System in China[J].Electronic Components and Information Technology,2022,6(5):142-146.
[6]浦俊懿.智能汽车深度系列之二:车载操作系统和中间件带来的机遇[R/OL].上海:东方证券,2022.https://www.fxbaogao.com/detail/3102380.PU J Y.Intelligent Vehicles in Depth Series Ⅱ:Opportunities Presented by On-Board Operating Systems and Middleware[EB/OL].Shanghai: Orient Securities,2022.https://www.fxbaogao.com/detail/3102380.
[7]刘宇,黎宇科,葛鹏,等.智能网联汽车软件操作系统现状及发展建议[J].汽车工业研究,2023(2):16-18.LIU Y,LI Y K,GE P,et al.Current Situation and Development Suggestions of Intelligent Connected Vehicle Software Operating System[J].Auto Industry Research,2023(2): 16-18.
[8]奚美丽,张远骏.自动驾驶操作系统现状与发展趋势[J].汽车与配件,2021(12):64-71.XI M L,ZHANG Y J.Current Situation and Development Trends of Autonomous Driving Operating Systems.Automobile&Parts,2021(12):64-71.
[9]李鲁苗,周玮.全球车用操作系统发展现状[J].汽车纵横,2022(1):39-42.LI L M,ZHOU W.Global Development Status of Automotive Operating Systems[J].Auto Review,2022(1):39-42.
[10]BURKACKY O,DEICHMANN J,GUGGENHEIMER M,et al.Outlook on the Automotive Software and Electronics Market through 2030[R/OL].London: McKinsey,2023.https://www.mckinsey.com/industries/automotiveand-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030.
[11]黄辛旭.行业热议汽车“缺芯少魂”:芯片无需100%自研,操系统亟需自主可控[EB/OL].(2022-09-07)[2023-10-07].http://www.nbd.com.cn/articles/ 2022-09-07/2456467.html.HUANG X X.Industry Hot Discussion on Automotive“Lack of Core and Soul”: Chips Do Not Need to Be 100%Self-Developed,and Operating Systems Urgently Need to Be Independently Controllable[EB/OL].(2022-09-07)[2023-10-07].http://www.nbd.com.cn/articles/ 2022-09-07/2456467.html.
[12]赵世佳,徐可,宋娟,等.我国智能网联汽车操作系统发展的实施策略[J].科技管理研究,2020,40(9):107-111.ZHAO S J,XU K,SONG J,et al.Implementation Strategies for the Development of Intelligent Connected Vehicle Operating Systems in China[J].Science and Technology Management Research,2020,40(9):107-111.
[13]杨忠阳.加快推动国产操作系统“上车”[N/OL].经济日报,2022-9-16(10).YANG Z Y.Accelerate the “launch” of Domestic Operating Systems[N/OL].Economic Daily,2022-9-16(10).
[14]新浪财经.智能手机操作系统历年市场份额排行榜(1999-2019 Q3)[EB/OL].(2019-12-11)[2023-10-07].https://t.cj.sina.com.cn/articles/view/1231317854/m49646b5e03300ph08?from=tech.Sina Finance.Smartphone Operating System Market Share Ranking Over the Years (1999-2019 Q3)[EB/OL].(2019-12-11)[2023-10-07].https://t.cj.sina.com.cn/articles/view/1231317854/m49646b5e03300ph08?from=tech.
[15]QI E,ZHANG M M,ZHANG A.White Paper: China Premium Smartphone Market[EB/OL].(2023-06-30)[2023-10-07].https://www.counterpointresearch.com/insights/white-paper-china-premium-smartphone-market/.
END