需要更换手机了:由 TensorFlow Lite 构建无人驾驶微型汽车

TsinghuaJoking 2020-10-17 00:00

今天在 Tensorflow公号看到推文Pixelopolis:由 TensorFlow Lite 构建无人驾驶微型汽车 ,作者介绍了他们在今年Google I/O大会上展示的TensorFlot Lite构建的无人驾驶微型汽车的展品:Pixcelopolis

▲ TensorFlow Lite构建的无人驾驶微型车


每辆微型汽车都装配有一部 Pixel 手机,使用手机上的摄像头检测和理解周围的信号。手机使用了 Pixel Neural Core 边缘计算芯片( Edge TPU 支持的机器学习),可感应车道、避免碰撞和读取交通标志。

相比于基于云计算来实现视频处理和物体检测,边缘计算可以减少延迟对控制的影响(也许在5G下延迟影响小一点)。

▲ 通过手机识别各种目标的Pixelpolis


下图是整个展品的布局,模仿了一个小型城镇广场周围的交通环境。参观者可以通过手机端的一个应用模拟“站点”来选择出现的目的地。展品中的微型车就可以驾驶到目的地,整个过程用户可以查看车辆周围以及所检测到的物体。

▲ 演示区的道路设计


车模所有对外界的感知都来自于微型车膜前面的手机摄像头,有它获取前方的图片并手机内部署的神经网络完成车道保持、停车定位、障碍检测等。通过手机底部的USB-C接口扩展来与底层控制板通讯,完成电机控制等。

▲ 手机应用程序与Pixelopolis交互


▲ 手机端可以查看车辆周围所检测到的物品


展品作者采取了与 论文:End-to-end Learning for Self-Driving Cars中相类似的技术录像,使用卷积神经网络(CNN)来检测每帧图像内的交通指示线,并给出方向盘的调整量。增加了LSTM利用前期拍摄的多个图像帧进行改进。

▲ CNN 模型的输入和输出


控制器的模型很简单,下面代码就给出了网络的结构构成。

net_in = Input(shape = (80, 120, 3))
x = Lambda(lambda x: x/127.5 - 1.0)(net_in)
x = Conv2D(24, (5, 5), strides=(2, 2),padding="same", activation='elu')(x)
x = Conv2D(36, (5, 5), strides=(2, 2),padding="same", activation='elu')(x)
x = Conv2D(48, (5, 5), strides=(2, 2),padding="same", activation='elu')(x)
x = Conv2D(64, (3, 3), padding="same",activation='elu')(x)
x = Conv2D(64, (3, 3), padding="same",activation='elu')(x)
x = Dropout(0.3)(x)
x = Flatten()(x)
x = Dense(100, activation='elu')(x)
x = Dense(50, activation='elu')(x)
x = Dense(10, activation='elu')(x)
net_out = Dense(1, name='net_out')(x)
model = Model(inputs=net_in, outputs=net_out)

一个神经网络是否能够达到很好的性能,关键在于如何准备好让它学习的训练样本。为此。作者使用Unity, Udacity来构建了模拟器,自动生成训练车辆的图像数据。

通过在轨道上设置多个路径点, 微型汽车 可以行驶到不同的地点,并从中收集数据。在此模拟器中,我们每 50 毫秒收集一次图像数据和转角数据。

▲ 模拟器中的轨道中上设有多个路径点


大家都知道,软件虚拟出的场景图片和实际拍摄到的图片会有很大的差别,包括光线、周围环境以及其他的噪声。为了使得训练的神经网络能够适应实际要求,需要对数据进行增强。

他们将以下变量添加到场景中:随机的 HDRI 球体(具有不同的旋转模式和曝光值)、随机的环境亮度和颜色以及随机出现的车辆。

▲ 各种环境下的数据增强


下图给出了经过训练之后,卷积神经网络的第一层对于输入图片的输出。可以看出,它已经能够很好地将图片中道路信息边缘信息能够很好的提取,对于背景可以进行有效的压制。

▲ 第一层神经网络的输出


使用神经网络进行控制的一个最大的问题,就是车模有时会出现莫名其妙的动作。比如下面这个场景,明明已经成功的拐过弯道,进入平坦顺直的道路,车模则抽风地冲出跑道了。

这主要是因为所训练的样本没有能够均匀包含各种道路情况,模型比较脆弱。

▲ 早期版本中玩具车偏离了轨道


为此,在场景中添加了各种形状的曲线,以丰富原来训练数据库中大多数的直线轨道数据。

▲ (左)方形轨道与(右)弯曲轨道


功夫不负有心人,修正数据集不均衡的问题后,车辆便开始能够在弯道处正确转向。

▲ 车辆在弯道可以成功转弯


似乎理性的增加数据可以提高车模的性能,但有时候仅仅采用小的技巧便可以解决大问题。比如当微型车模运行到展品边缘时,就会看到很多展台外面的场景。外面的场景多变,很难通过数据来表征这些变化。怎么办?

作者就用了一个字:

将输入图像的下面四分之一切出来,送入神经网络进行训练,就有效化解了上述的问题。

▲ 展品上的轨道,以及在展品边缘看到的图像


为了能够进行车辆定位以及检测其它干扰车辆,在手机Pixcel 4上的Neural Core Edge TPU上运行了 ssd_mobilenet_edgetpu 模型,这是来自 TensorFlow 目标检测模型库 。每帧检测时间仅用6.6毫秒,在实时应用中游刃有余。

为了是检测神经网络模型能够适应展品场景需要,作者同样使用了模拟器和真实场景中的数据来训练模型。为了提高检测鲁棒性,使用了 Unreal Engine 4 来随机生成物体和背景。使用 labelImg 工具进行对样本进行了手动标注。

▲ 进行目标识别的数据库


使用神经网络最大的工作量是在准备训练数据集合。之后的网络搭建和训练则非常容易,分分钟搞定。检查一下,网络识别交通标志的效果还是很不错的。

▲ 网络识别效果


最后一个工作,就是需要将网络部署到手机平台上。这需要借助于TensorFlow Lite 将模型进行个数转换,并在Android下编写相应的Python脚本来进行部署。

作者还设想着,通过视觉SLAM能够为他们的这个展品增加车辆全程定位。真的是一个手机平台可以练习很多算法。

▲ 视觉SLAM定位


为了实现一个顶着手机运行的微型车膜,作者也是费力不断改进机械结构,经过了五代设计最终得到了一个合理的机械设计。可以将手机、控制板、电池、电机等集成在一个小巧乖致的微型车模中。

▲ 第一代设计


▲ 第二代设计


▲ 第三代射击


▲ 第四代设计


▲ 第五代设计


下面给出了嵌入在车体内部的控制板、电机、电池等配件。

▲ 底层运动控制单片机板


▲ (左)屏蔽罩和电机,(右)电源插座、电源开关、电机启动按钮、电机重置按钮、开发板状态 LED、电机状态 LED


▲ 3000mAh 锂离子电池(左)与 18650 锂离子电池(右)


的确,一辆小小的微型车模,包括了计算机视觉、深度学习、传感器融合、定位、路径规划、控制、系统集成等多个学科内容。通过这个环节几乎可以将一个专业所需要学习的多个课程集成在一起。这不,在Udacity平台上,还真的提供了 无人驾驶汽车纳米学位项目 供希望获得全面培训的工程师和学生学习。

今天下午,教育部自动化类高等教学委员会在清华召开了院长会议,其中李少远老师对今年大学生学科竞赛实践教学进行了总结。以在刚刚过去的暑期中,新冠疫情影响下,成功举办的全国大学生智能车竞赛为例,探索面向未来实践发展。希望智能车竞赛为工科学生的大学期间专业课程实践提供更好的锻炼平台。

TsinghuaJoking 这是一个公众号,它不端、不装,与你同游在课下、课上。 卓晴博士,清华大学中央主楼 626A。010-62773349, 13501115467,zhuoqing@tsinghua.edu.cn
评论
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 71浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 141浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 50浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 83浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 85浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 109浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 102浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 51浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 71浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 79浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 88浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦