VHDL快速语法入门

原创 FPGA开源工作室 2024-03-03 09:30

 1 概述

HDL(VHSIC Hardware Description Language)是一种硬件描述语言,主要用于描述数字电路和系统的结构、行为和功能。它是一种用于硬件设计的标准化语言,能够帮助工程师们更好地描述和设计数字电路,并且广泛应用于FPGA和ASIC设计中。
在VHDL中,一个设计被描述为一个实体(entity),它包含了输入输出端口的描述。实体也包含了该设计的行为(behavior)的描述。 此外,VHDL还包括了标准库(standard library)和数学运算库(numeric package)等。
VHDL的基本语法包括关键字、标识符、注释、数据类型(如std_logic、integer等)、变量声明、信号声明、过程语句、并行操作符等。
以下是VHDL的一些基本特性和语法:
实体声明(Entity Declaration):实体(entity)是一个设计的接口和规范,描述了设计的输入和输出信号。在实体声明中,可以指定设计的接口和端口类型。
架构(Architecture):架构是实体的行为和功能描述。它包括了组件实例化、信号声明、过程语句等。在架构中,可以描述设计的逻辑和数据流动。
信号(Signal)和变量(Variable):在VHDL中,信号用于描述设计中的数据传输,而变量通常用于描述局部的数据存储。信号和变量的作用在于描述设计中的数据流动和数据处理。
过程(Process):过程描述了设计中的行为和逻辑。过程可以包括对信号和变量的操作、时序逻辑的描述等。
循环(Loop):VHDL中也包括了循环语句,用于描述设计中的重复操作。
总的来说,VHDL是一门强大的硬件描述语言,能够帮助工程师们进行数字电路的设计和描述。通过VHDL,工程师们可以更好地理解和描述设计的结构和行为,从而实现复杂的数字系统设计。虽然VHDL的语法可能对初学者来说有一定的复杂性,但一旦熟悉了其基本特性和语法,将会成为非常有用的工具。

library IEEE;
use IEEE.std_logic_1164.all;

entity ExampleModule is
port(
clk, reset : in std_logic;
input1, input2 : in std_logic_vector(7 downto 0);
output1 : out std_logic_vector(7 downto 0)
);
end ExampleModule;

architecture Behavioral of ExampleModule is
component SubModule is
port(
a, b : in std_logic_vector(7 downto 0);
c : out std_logic_vector(7 downto 0)
);
end component;

signal intermediate : std_logic_vector(7 downto 0);
begin
SubModule_inst : SubModule
port map(
a => input1,
b => input2,
c => intermediate
);

process(clk, reset)
begin
if reset = '1' then
output1 <= (others => '0');
elsif rising_edge(clk) then
output1 <= intermediate;
end if;
end process;
end Behavioral;

2 样例

按键消抖

设计文件:

library ieee;
use ieee.std_logic_1164.all;
use IEEE.NUMERIC_STD.ALL;

entity debouncing is
generic(N: integer := 10);
port( clk: in std_logic;
rst: in std_logic;
u: in std_logic;
delay : in std_logic_vector(N-1 downto 0);
y: out std_logic);
end debouncing;

architecture arch of debouncing is
type state_type is (zero, wait0, wait1, one);
signal state, state_n: state_type;

signal cnt, cnt_n: unsigned(N-1 downto 0);
begin
-- state register
process(clk,rst)
begin
if (rst='1') then
state <= zero;
cnt <= (others => '0');
elsif (rising_edge(clk)) then
state <= state_n;
cnt <= cnt_n;
end if;
end process;
-- next-state/output logic
process(state,u,cnt,delay)
begin
state_n <= state;
cnt_n <= (others => '0');

case state is
when zero =>
y <= '0';
if u= '1' then
state_n <= wait0;
end if;

when wait0 =>

y <= '0';

-- check next state
if u = '0' then
state_n <= zero;
elsif cnt = unsigned(delay) then
state_n <= one;
end if;

-- increment counter
cnt_n <= cnt + 1;

when wait1 =>

y <= '1';

-- check next state
if u = '1' then
state_n <= one;
elsif cnt = unsigned(delay) then
state_n <= zero;
end if;

-- increment counter
cnt_n <= cnt + 1;

when one =>
y <= '1';
if u= '0' then
state_n <= wait1;
end if;
end case;
end process;
end arch;

按键消抖仿真文件:

ibrary ieee;
use ieee.std_logic_1164.all;
use IEEE.NUMERIC_STD.ALL;

entity debouncing_tb is
end debouncing_tb;

architecture tb of debouncing_tb is

constant N: integer := 8;
signal delay: std_logic_vector(N-1 downto 0);
signal u, y,z : std_logic;

signal clk, rst : std_logic;
-- Clock period definitions
constant Ts : time := 10 ns;

begin

db0 : entity work.debouncing
generic map(N => N)
port map (clk => clk,
rst => rst,
delay => delay,
u => u,
y => y);

-- Clock process definitions
process
begin
clk <= '0';
wait for Ts/2;
clk <= '1';
wait for Ts/2;
end process;


stimuli : process
begin
rst <= '1';
u <= '0';
delay <= (others => '0');

wait for 5*Ts;

rst <= '0';
delay <= std_logic_vector(to_unsigned(20,N));

u <= '1';
wait for 3*Ts;

u <= '0';
wait for 5*Ts;

u <= '1';
wait for 10*Ts;

u <= '0';
wait for 3*Ts;

u <= '1';
wait for 25*Ts;

u <= '0';
wait for 2*Ts;

u <= '1';
wait for 5*Ts;

u <= '0';
wait for 25*Ts;

wait;
end process;

end tb;


3 常用编写

时序逻辑:
在 VHDL 中,时序逻辑指的是描述在特定时钟信号的边沿或状态变化下发生的操作。时序逻辑可以包括使用 rising_edge 或 falling_edge 函数来检测时钟信号的上升沿或下降沿,以及使用 wait for 语句来控制时序行为。下面是一个简单的示例,说明了时序逻辑的基本用法:

architecture Behavioral of ExampleModule is
begin
process (clk)
begin
if rising_edge(clk) then
-- 在时钟上升沿执行的操作
-- 例如,更新寄存器、执行状态转移等
end if;
end process;
end architecture Behavioral;

在这个例子中,我们定义了一个处理时钟信号 clk 的过程。使用 if rising_edge(clk) then 表示当检测到时钟信号的上升沿时执行操作。在这个逻辑块中,你可以更新寄存器、执行状态转移等与时钟相关的操作。这种时序逻辑的描述允许你根据特定时钟信号的变化来控制设计的行为。

时序逻辑在数字电路设计中非常重要,因为它能够确保设计在特定时钟信号的控制和同步下正确运行。通过使用时序逻辑,可以将设计的行为明确地与时钟信号进行关联,从而实现可靠的同步逻辑。

VHDL组合逻辑:
在 VHDL 中,组合逻辑是指在不涉及时钟信号的条件下,根据输入直接计算输出的逻辑部分。通常,组合逻辑描述了在给定输入条件下的输出行为,而且输出立即对输入进行响应,不依赖于时钟的边沿。以下是一个简单的示例,说明了组合逻辑的基本用法:

-- 一个简单的 2:1 多路选择器的组合逻辑
entity Mux2x1 is
port (
sel: in std_logic;
a, b: in std_logic;
y: out std_logic
);
end entity Mux2x1;

architecture Behavioral of Mux2x1 is
begin
process (sel, a, b)
begin
if sel = '0' then
y <= a;
else
y <= b;
end if;
end process;
end architecture Behavioral;

在这个例子中,我们创建了一个名为 Mux2x1 的实体,该实体具有三个输入端口 sel、a 和 b 以及一个输出端口 y。在 Behavioral 架构中的处理过程中,我们使用 if 语句来根据输入信号 sel 的值选择输出的值。这是一个典型的组合逻辑,因为输出 y 的值是仅仅依赖于当前输入信号的状态而计算出来的,不涉及时钟或者时序控制。

组合逻辑在数字电路设计中很常见,它描述了电路在给定输入下的输出行为,没有涉及时钟控制或时序逻辑。

case语句:
当需要根据输入的不同值采取不同的操作时,可以使用VHDL中的case语句。下面是一个简单的VHDL case语句的示例:

process (input)
begin
case input is
when "00" =>
-- 对输入为 "00" 执行的操作
output <= "0000";
when "01" =>
-- 对输入为 "01" 执行的操作
output <= "0011";
when "10" =>
-- 对输入为 "10" 执行的操作
output <= "1100";
when others =>
-- 对其他输入情况下执行的操作
output <= "1111";
end case;
end process;

在这个例子中,我们在一个process中使用了case语句来根据输入的不同情况执行相应的操作。当输入信号input的值满足某个条件时,对应的输出output会被赋予相应的值。 “when others” 表示当输入值不满足前面列举的情况时执行的操作。

这个例子展示了VHDL中使用case语句进行条件判断和执行不同操作的方法。

状态机:

在 VHDL 中实现状态机(state machine)通常是通过组合逻辑和时序逻辑相结合的方式来完成的。状态机描述了一个系统在不同状态下的行为,通常会随着输入信号的变化而转换状态。下面是一个简单的示例,说明了一个基本的有限状态机在 VHDL 中的实现:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity SimpleFSM is
Port ( clk : in STD_LOGIC;
reset : in STD_LOGIC;
input : in STD_LOGIC;
output : out STD_LOGIC);
end SimpleFSM;

architecture Behavioral of SimpleFSM is
type state_type is (s0, s1, s2, s3);
signal state, next_state : state_type;
begin
process (clk, reset)
begin
if reset = '1' then
state <= s0; -- 在复位时将状态设置为初始状态
elsif rising_edge(clk) then
state <= next_state; -- 在时钟的上升沿根据下一个状态进行状态更新
end if;
end process;

process (state, input)
begin
case state is
when s0 =>
if input = '1' then
next_state <= s1; -- 根据输入信号转移至下一个状态
else
next_state <= s0; -- 如果输入信号不满足条件,保持在当前状态
end if;
when s1 =>
if input = '0' then
next_state <= s2;
else
next_state <= s1;
end if;
when s2 =>
if input = '1' then
next_state <= s3;
else
next_state <= s2;
end if;
when s3 =>
next_state <= s0;
when others =>
next_state <= s0;
end case;
end process;
end Behavioral;

在这个例子中,我们创建了一个名为 SimpleFSM 的实体,该实体包括了时钟信号 clk、复位信号 reset、输入信号 input 和输出信号 output。状态机的行为由 state 和 next_state 信号来描述。在第一个 process 中,我们根据时钟信号和复位信号来更新 state 的值,以此来控制状态的转移。在第二个 process 中,我们根据当前的状态和输入信号来计算下一个状态 next_state。这个状态机描述了一个简单的输入序列检测过程,根据输入序列的不同,状态机将在不同的状态间转移。这是一个基本的有限状态机的例子,通过状态的转移来实现不同的行为。

时钟信号编写:
a)占空比为50%

constant PERIOD : time := <value>;  --定义时钟周期

--使用after语句
CLK <= not CLK after PERIOD/2;

--使用wait语句
constant PERIOD : time := <value>;
CLK <= '0';
wait for PERIOD/2;
CLK <= '1';
wait for PERIOD/2;

b)非50%占空比

constant DUTY_CYCLE : real := <value_0.01_to_0.99>; --定义占空比系数
constant PERIOD : time := <value>; --定义时钟周期


--使用after语句


CLK <= '1' after (PERIOD - (PERIOD * DUTY_CYCLE)) when CLK = '0'
else '0' after (PERIOD * DUTY_CYCLE);


--使用wait语句

CLK <= '0';
wait for (PERIOD - (PERIOD * DUTY_CYCLE));
CLK <= '1';
wait for (PERIOD * DUTY_CYCLE);

c)差分端口占空比为50%

constant PERIOD : time := <value>;   --设置时钟周期

--使用after语句

CLK_P <= not CLK_P after PERIOD/2;
CLK_N <= not CLK_N after PERIOD/2;
--使用wait语句
CLK_P <= '0';
CLK_N <= '1';
wait for PERIOD/2;
CLK_P <= '1';
CLK_N <= '0';
wait for PERIOD/2;

延时:

constant SIM_TIME : time := 10 ms;  --设置仿真时间SIM_TIME, 时间为10ms
<signal_name> <= <signal_value> after SIM_TIME; --信号在SIM_TIME后进行赋值

wait on <signal_name>; --延时到信号有变化

wait until falling_edge(<signal_name>); --延时到信号的下降沿到来

wait until rising_edge(<signal_name>); --延时到信号的上升沿到来

wait until <signal_name> = <value>; --延时到信号变化到指定值

循环:
a) loop语句

loop
CLK <= not CLK;
wait for PERIOD/2;
if <signal_name = <value> then
exit;
end if;
end loop;

b) for语句

for <variable_name> in <lower_limit> to <upper_limit> loop
<statement>;
<statement>;
end loop;

c)while语句

while <condition> loop
<statement>;
<statement>;
end loop;


FPGA开源工作室 知识,创新,创艺,FPGA,matlab,opencv,数字图像,数字信号,数字世界。传递有用的知识,传递创艺的作品。FPGA开源工作室欢迎大家的关注。
评论 (0)
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 345浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 308浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 348浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 140浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 305浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 319浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 467浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 66浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 60浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 157浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 132浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 570浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦