ISSCC2024:三星利用对称马赛克架构将DDR5容量翻倍

EETOP 2024-02-29 11:36

点击这里👇关注我,记得标星哦~

在最近的 IEEE 国际固态电路会议 ( ISSCC ) 上,三星科学家发表了一篇论文,继续推动 DDR5 性能的进步。

三星的目标是通过其新提出的架构将 DRAM 容量提高一倍。

这篇题为 "在第五代 10 纳米 DRAM 工艺中采用对称马赛克架构(Symmetric-Mosaic)的 32-Gb 8.0-Gb/s/pin DDR5 SDRAM "的论文涵盖了目前使用的 16-Gb 架构的局限性和三星提出的对称马赛克布局。在本文中,我们将总结论文中概述的架构的关键组件。

单片裸片(DIE):从 16-Gb 到 32-Gb

目前,最高容量的 DDR5 内存采用基于 16 Gb 裸片并采用 10 纳米工艺制造的三维堆叠 (3DS) 架构。目前主流的终端产品是64GB DDR5 DRAM模块,128GB模块的需求不断增加。

三星论文描述了一款单片 32 Gb 高密度 DDR5 裸片,仍采用 10 纳米工艺。三星声称,基于 32 Gb 裸片的 3DS 系统将提高性能,在八个芯片堆栈中使用时支持高达 1TB 的内存,并实现每个引脚每秒 8 Gb 的速度。

业界认识到需要转向 32 Gb 裸片。然而,存在许多障碍。小于 10 nm 的 DRAM 节点尚未准备就绪,因此芯片制造商必须找到在不改变晶圆厂工艺的情况下增加产能的方法。此外,当前 DRAM 模块的外形尺寸过于固定,无法在不显着提高容量或性能的情况下增加封装尺寸。

“马赛克”架构分区克服传统 DRAM 大小限制

32 Gb 裸片将是一种适应,而不是新标准,因此必须适应传统的 JDEC 规定的 DDR5 外形尺寸限制(最大 10 毫米 x 11 毫米)。在不减小工艺尺寸的情况下增加容量的传统方法包括在存储体中添加 DRAM 单元或将逻辑存储体中的物理存储体数量加倍。这会导致矩形内存占用空间在垂直或水平方向上超过 10 mm x 11 mm 封装尺寸边界框。

传统方法(左)和对称镶嵌方法(右)裸片容量增加的比较。 

在所提出的架构中,每个逻辑存储体被分为 ⅓ 和 ⅔ 分区。它们作为逻辑存储体不同分区的对称镶嵌体而间隔开。这使得 DRAM 容量增加了一倍,而水平面积和垂直面积仅增加了 1.5 倍和 1.33 倍(适合边界框)。

来自不同逻辑存储体的两个分区将共享相同的全局 I/O (GIO) 信号线和读出放大器。这种共享减少了 GIO 线路负载电容,从而提高了速度并降低了功耗。这种物理布局将 I/O 保持在中心,与 16-Gb 芯片中使用的一样,共享相同的焊盘结构,并利用类似的硅通孔 (TSV) 结构来连接 3DS 层。

对称马赛克架构 

GIO 线的“马赛克”交错和共享利用了保证读到读和写到写时序规范 (tCCD_L) 的精确时序。物理存储体作为逻辑存储体进行划分和访问,tCCD_L 特性用于指示时序。

提高速度并减少干扰

要在如此高的速度下保持数据准确,需要额外的逻辑来实现所谓的决策反馈均衡 (DFE)。高速数字并不是低速情况下简单的“开/关”电压转换。信号是圆形的、受到干扰的,并且通常表现得更像模拟而不是数字。信号线电容和电阻实质上创建了具有 R/C 时间常数的滤波器,该滤波器会扭曲并阻碍携带信息的信号(符号)。一个符号的影响可能会渗透到下一个符号,或者来自接收组件的反射可能会使符号失真,从而导致符号间干扰 (ISI),必须减轻这种干扰以防止无效数据。

三星提出的架构在传统 DFE 电路中添加了四抽头系统,这是传统两抽头 DFE 的替代方案。在 DFE 电路中,抽头被反馈到输入并求和。四抽头直接反馈一抽头以最大限度地减少反馈延迟。第二、第三和第四抽头使用电流模型逻辑 (CML) 求和来进一步提高符号精度。

(a) 四抽头 DFE。(b) 点击一个直接给采样器供料。(c) 将二到四分接至 CML 电路。 

DFE 与 DQ 缓冲器中的自动偏移电压校准电路一起运行。校准电路通过使用四个路径进行四个操作阶段来补偿偏移,并根据四个路径输出的直接多数表决进行校准。其结果是能够以 8 Gb/s 或更快的速度可靠运行。

芯片ID预解码

由于每个芯片的 RAM 单元加倍,功耗变得比 16 Gb 芯片更加重要。由于这些芯片将主要安装在 3D 堆叠配置中,因此芯片制造商必须改进针对低效芯片的流程。

“rank”是物理存储体的逻辑组合集,其承载与片上数据总线相同的数据字宽。它可以在物理芯片内形成,也可以在 3D 堆叠芯片系统中跨多个芯片形成。例如,八个堆叠管芯中每一个的左上象限可以组合成一个8位逻辑列并作为一个8位逻辑列进行寻址。

在标准配置中,命令带有芯片 ID (CID) 进入命令总线。然后所有等级都执行解码以查看它们是否是预期目标。解码完成后,仅遵循预期的排名。让所有级别执行解码操作会浪费大量的功率。

(a) 传统的 CID 解码堆栈和 (b) 三星提出的预解码系统。

该提议的架构在每个等级中都带有芯片 ID 预解码。借助此类功能,主列在 TSV 之前具有预解码电路。如果 CID 不是预期目标,它只会将其发送到下一个等级。本质上,堆栈中的每个等级都会在 CID 成为预期目标时停止它。如果堆栈中的最后一个等级是预期目标,则不会节省电量,但对于顶部以下的所有等级,则会节省一定比例的电量。

在当今的外形尺寸内取得进步

三星提出的架构可以在不改变整体外形尺寸或减少芯片蚀刻几何尺寸的情况下大幅提高 DRAM 容量。通过使用更高效的非传统组织结构,可以在不改变标准或工厂的情况下,在相同的面积内容纳更多的容量。建议的架构采用逻辑等级、时序特异性和资源共享来增加容量、降低功耗和提高最高速度。

根据三星的测算,基于 32 GB 的 0.5 TB DIMM 比基于 16 GB 的 DIMM 功耗低 30%,使其成为数据中心和其他容量和功耗要求较高的计算应用的理想选择。


ISSCC 2024 Session Digest PPT(全)

EETOP EETOP半导体社区-国内知名的半导体行业媒体、半导体论坛、IC论坛、集成电路论坛、电子工程师博客、工程师BBS。
评论
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 86浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦