电池安全——从锂离子电池到固态电池

智能制造IM 2024-02-27 19:37




迄今为止,锂离子电池(LIB)的应用已经从传统的消费电子产品扩展到电动汽车(EV)、储能、特殊领域和其他应用场景。锂离子电池技术的快速发展和市场的不断扩张给电池安全带来了巨大的压力,一旦发生电池相关事故,可能会影响公众安全。人们对与电池相关的事故(特别是在电动汽车和储能等新兴应用中)的关注一直在增加。此外,随着电池容量的增加,这类事故的规模显著扩大。电池相关事故的影响可能严重降低消费者在某些领域应用的信心。因此,促进电池安全对于使锂离子电池在各个应用领域的广泛渗透和电池行业的可持续发展至关重要。
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
 - 文章信息 - 


本文作者:中国科学院禹习谦、陈汝颂、甘露雨、李泓、陈立泉。原创首发于《Engineering》杂志2023年第21卷第2期。


01

引言


迄今为止,锂离子电池(LIB)的应用已经从传统的消费电子产品扩展到电动汽车(EV)、储能、特殊领域和其他应用场景。锂离子电池的产能迅速增长,从2011年的26 GW∙h到2021年的747 GW∙h,其中76%来自中国[1]。锂离子电池在能量密度、功率密度、安全、成本等方面的性能也在提高,以满足不同应用场景的严格需求。锂离子电池技术的快速发展和市场的不断扩张给电池安全带来了巨大的压力,一旦发生电池相关事故,预计将受到公众的广泛关注。近年来,人们对与电池相关的事故(特别是在电动汽车和储能等新兴应用中)的关注一直在增加。此外,随着电池容量的增加,这类事故的规模显著扩大。电池相关事故的影响可能严重降低消费者在某些领域应用的信心。因此,促进电池安全对于使锂离子电池在各个应用领域的广泛渗透和电池行业的可持续发展至关重要[2]。


研究人员和工程师从固有安全、被动安全和主动安全的角度提出了许多方法来处理锂离子电池的安全问题;在这些方法中,固态电池(SSB)的发展在涵盖所有三种安全策略方面具有巨大的潜力。SSB采用更稳定的固态电解质来取代传统锂离子电池中的挥发性和易燃液体电解质。从理论上讲,使用固态电解质有望提高电池的能量密度和其他性能指标,同时将电池的安全性保持在一定的水平[3]。到目前为止,在世界范围内开发SSB已经做出了巨大的努力。


       


欧洲、日本、美国和韩国已经启动了支持SSB研发的国家项目,包括欧洲的电池2030+、日本的RISING3和Solid-EV、美国的电池500和韩国的K-电池2030。不同类型的SSB,如硫化物、氧化物、薄膜和聚合物基电池,正在同时开发[3‒6]。加强与SSB安全性相关的基础科学研究和应用研究,对于促进SSB技术的成熟,最终建立市场非常重要。本文将对近年来发生的与锂离子电池相关的事故进行分析,描述这些事故的特点,并讨论当前提高锂离子电池安全性的策略。此外,还将讨论在材料、电池和系统级别上具有固有安全、被动安全和主动安全策略的电池设计中使用SSB的新机会。


02

电池相关事故简析


以电动汽车电池为例,从事故时间、电池系统类型、事故类型、区域等方面对与电池相关的事故进行了分析。其基本信息汇总如图1所示。


2019年1月至2021年8月期间涉及电动汽车的火灾事故分析。(a)每月电动汽车火灾事故数;(b)每年电动汽车火灾事故数和电动汽车数量;(c)不同类型锂离子电池造成事故的比例。

(1)时间:从历年相关事故数量来看,电池相关事故并没有随着电动汽车保有量的快速增加而急剧增加,说明电池技术和制造质量水平取得了显著进步。大多数与电池相关的事故发生在6月、7月和8月,这说明高温条件是导致电池安全恶化的一个重要因素。


(2)电池系统:使用LiNixMnyCozO2(x + y + z = 1; NMC)作为阴极的LIB在电池相关事故中的比例明显高于使用磷酸铁锂(LiFePO4, LFP)作为阴极的LIB,这表明能量密度与安全性之间存在统计学相关性,即电池的能量密度越高,其安全风险越高。在LIB中,能量密度与安全性之间的矛盾是因为,当更多的能量储存在电极材料的化学键中时,化学稳定性较差。


(3)事故类型:在电池充电、汽车驾驶、电池滥用(如碰撞)期间,甚至当电池处于静态状态时,都可能发生与电池相关的事故。这类事故很少是由于汽车碰撞;在大多数公众所知的事故中,冒烟、起火或爆炸的发生都没有表面原因。这一看似不可预测的特征,不同于使用内燃机的传统汽车的安全相关行为,被公众称为所谓的“电动汽车自燃”,使消费者对电动汽车的安全感到焦虑。


(4)地区:只有杭州、深圳、西安、上海、北京、重庆和武汉等城市报道了三起以上的电池相关事故。这与这些城市中的电动汽车保有量大有关。


基于以上分析,可以发现:①电池相关事故的发生有一定的概率,可能受到各种因素的影响,如电池本身、热管理系统、充电设备和操作环境,其中高温环境的影响较大;②“非碰撞自燃”的存在抑制了消费者对电动汽车的信心;③在报告数据中,能量密度高的NMC电池比LiFePO4电池发生事故的概率更大,表明较高的能量密度会降低电池的安全性。


03

提高电池安全性的最先进的策略


目前,提高电池安全性的解决方案可分为以下三类。


3.1 提高电池的固有安全性

电池的固有安全是指电池本身的安全性[7],它直接决定了电池相关事故发生的概率。许多因素会影响电池的固有安全,包括电池中使用的材料(即NMC或LFP)、电池设计[即隔膜的厚度、阳极和阴极的容量比(N/P比)]、制造质量水平(即杂质控制、制造精度)、电池的一致性和可靠性。以下策略可以用来提高电池的固有安全性:


• 提高生产质量水平:良好的生产和制造质量是电池安全的基础。在过去的几十年里,电池生产技术和设备得到了快速发展。目前,主要电池制造商可以将产品合格率控制在较高水平。下一代高能密度电池对制造的要求更高。因此,智能制造和工业4.0是主要电池制造商关注的重点。


• 提高电池材料的稳定性:即使实现了高水平的制造质量,高能量密度的NMC电池的内在安全性能也明显不如LFP电池,开发高能量密度和高安全性的锂离子电池仍然是一个挑战[8]。对于高能量密度电池,材料和电池层面的主要解决方案如下:①可以优化表面涂层、掺杂、组分和结构设计,以提高阴极材料在高温下的结构稳定性。近年来,在阴极表面涂覆具有高离子电导率的固体电解质已经受到了广泛的关注,并被证明有潜力解决氧化物阴极材料的固有氧释放问题。②不易燃溶剂和阻燃添加剂可以用来提高电解质的热稳定性和减少热失控规模。③可以控制形成过程,并可以设计人工固体电解质中间相(SEI)界面来提高SEI的热稳定性,从而提高电池在高温下的耐久性。④可以开发出理论上具有更高安全性的新型电池系统,如SSB和水系电池。然而,新技术在电池工业领域的应用往往需要数年甚至几十年的时间和精力,而这些系统仍在开发之中。


3.2 保证电池安全的被动策略

被动安全的主要思想是使电池始终保持在一个安全范围内,并通过冗余设计将电池热失控的影响控制在一个较小范围内,而不影响整个系统的正常运行。目前,被动安全主要是通过电池系统的热管理来实现,重点是散热、保温、隔热[9]。


• 散热:为了保证电池的温度不超过正常工作温度的上限,电池内产生的热量(特别是在大功率工作时)应立即散热。风冷和水冷在早期取代自然冷却,可以大大提高电池的冷却效率。


• 保温/预热:除了在高温下的安全风险外,当电池在低温下运行时,镀锂和局部过充电也是关键问题,大大降低了电池的固有安全性。因此,当电池在低温下运行时,需要进行预热,以确保电池高于临界温度。目前,预热的主要方法是使用安装在电池组底部的加热膜来加热电池。更高效和更少能耗的加热方法,如电池自加热、相变加热或热泵加热正在开发中。


• 隔热:隔热是被动安全的另一个重要方面。隔热的核心思想是减少电池热失控的影响,防止单个电池的热失控引起热量扩散,防止电池的热失控进一步发展为电池系统的燃烧和爆炸。这是目前电动汽车企业实现电动汽车终身不燃烧的最有效的核心手段。具体的策略包括在电池之间使用隔热材料、蜂窝结构的设计,以及隔热材料的模块化。最终的目标是确保单个电池的热失控不会触发电池系统内的热失控传播,从而导致电动汽车起火。


3.3 保证电池安全的主动策略

主动安全的核心思想是使用内置或外部传感器监测电池中与安全问题相关的特征标志,并在电池即将失去热量控制之前发出警告,从而使系统及时停止工作。主动安全可以通过大数据和“小数据”的帮助来实现。大数据的理念是构建一个云平台,实时监控每个电池系统的工作状态,并提前识别异常电池。目前使用的云平台的主要功能是识别单个电池的电压与所有电池的整体平均电压之间的偏差,从而挑出异常电池,发出早期预警。中国最具代表性的云平台是由北京理工大学建立的国家新能源汽车监测和管理平台,其框架是基于香农熵算法[10]构建的。


但是,由于硬件和软件的局限性,目前云平台所能处理的数据仅限于电压信号,并且由于实时采样率较低(每30 s采取一个数据),很难识别电压信号的变化率。因此,早期预警是大数据平台的主要目的。“小数据”,即电压、电流、电阻、温度和信号变化率的数值,在预警过程中起着重要作用。由于热失控不可避免地伴随着特征反应,某些特征参数及其变化速率可以作为电池热失控发生的预警。最典型的参数是温度和电压信号。当电池的温度、电压和电阻低于临界值时,或者当这些参数的变化率高于临界值时,电池系统会发出热失控报警。最近有研究表明,电池在热失控的早期阶段会释放出特征气体[11],因此这些特征气体的含量或变化率以及电池内的压力可以作为电池热失控的报警信号。一个很好的例子是郑州大学开发的储能发电站氢预警系统,它可以在热失控发生前10 min对电池热失控进行预警[12]。


04

SSB的安全特性和使用机会


SSB的形式因其材料系统和电池设计而不同。SSB有望大大提高电池系统的固有安全性,并扩大被动和主动安全策略的设计空间。正在开发的SSB根据其所应用的电解质可分为四种类型:聚合物基、薄膜基、硫化物基和氧化物基SSB。图2总结了它们的典型化学成分、特性和改进策略。我们将从如图3所示的材料、电池和系统的三个方面来讨论SSB在提高电池安全性方面可能具有的优势。


不同固体电解质作用下SSB的开发进展。PEO-LiFSI:聚环氧乙烷溶解Li[N(SO2F)2];LiPON:氮磷锂;LCO:LiCoO2;LNM:LiNi0.5Mn1.5O4;LPS:Li3PS4;LPSCl:Li6PS5Cl;LLZO:Li7La3Zr2O12;NASICON:钠超离子导体,包括Li1.3Al0.3Ti1.7(PO4)3和Li1.5Al0.5Ge1.5(PO4)3;NIMTE:中国科学院宁波材料技术与工程研究所;Julich:德国朱利希研究中心。


图3 材料、电池和系统级别的材料和电池设计的变化为SSB的电池安全设计策略提供了新的机会。


4.1 材料层面

4.1.1. 降低系统的整体热力学能

由于固体电解质的热力学稳定性高于液体电解质,因此SSB在高温下不会发生剧烈的化学反应。当其他主要成分相同,只考虑各成分在空气中回到最稳定状态后释放的能量时,增加固体电解质含量,减少液体电解质含量,将降低整个电池系统完全热失控所释放的总能量,缩小整体事故危害的规模。


4.1.2. 提高热稳定性

由于固体电解质不太可能参与燃烧反应,可以显著提高SSB界面的稳定性[13],从而提高自发反应和热失控阈值温度,拓宽SSB的安全边界。导致多相界面稳定性提高的主要原因是固体电解质涂层或原位形成导致了稳定的SEI和阴极-固态电解质间相(CEI),这可能会延迟电池的初始自放热温度[14]。对于全固态电池(ASSB),电极和电解质界面可能具有更高的热稳定性。Chen等[15]最近的研究表明,即使对于锂金属阳极,氧化物电解质和锂阳极之间的初始反应温度也高于250 ℃,这远远高于液体电解质和锂阳极之间的初始反应温度(一般为60~120 ℃)。这一发现表明,虽然在高温下热失控可能无法完全避免,但金属锂在SSB中比在液体锂离子中具有更好的安全性能。


4.1.3. 延缓反应动力学

由于大多数固体电解质在锂阳极下是稳定的,因此即使SEI已经分解,电极和固体电解质之间的反应也不会继续发生。此外,在电极材料上的固体电解质涂层也可以防止自发的表面反应。最近的研究表明,SSB中固体电解质可能减缓电极材料和电解质的反应[16],从而可能会延迟电池系统的温度升高,避免加速放热反应到热失控,并提供一个更长的电池安全警告响应时间。


4.2 电池层面

4.2.1. 阻断阴极和阳极之间的化学串扰

由于固体电解质致密,通过合理的电池设计可以延迟或阻止阴极释放的氧气或阳极产生的氢气的扩散,从而避免电池内部的化学串扰,提高SSB的固有安全特性。


4.2.2. 提高耐热滥用的耐久性

基于上述材料层面的分析,固体电解质的引入可以有效提高SSB耐热滥用的能力,预计热箱试验的安全温度可超过200 ℃。固体电解质的电化学稳定性窗口有利于提高其抗电滥用特性。由于隔膜(固体电解质或涂有固体电解质的隔膜)的高强度,当电池发生机械损伤时,可以避免严重的内部短路,提高抗机械滥用的特性。此外,固体电解质对锂金属的高稳定性可以有效降低快速充电过程中镀锂的风险,避免使用液体电解质的锂电池发生严重的热失控[17]。


4.2.3. 启用双极式设计

双极式设计要求电解质的流动性有限,以避免自放电;因此,它们只能在SSB中实现。双极电池可能有更好的安全性,因为它们在运行过程中产生更少的热量,从而减少了施加在热管理系统上的压力,促进了更大电池的设计。此外,电池串联组装在双极式电池中,因此当SSB遇到电气和机械滥用(如快速充电和碰撞引起的短路)时,可以大大降低安全风险[18]。


4.2.4. 提高制造的可靠性

由于SSB具有较高的整体电学、热学和机械强度,它们对电极的退化、过充和过放电、锂金属枝晶的产生以及杂质引起的短路具有较高的安全耐受性,这可以降低电池制造缺陷造成的事故风险,提高制造可靠性。


4.3 系统层面

4.3.1. 减少电池系统中的热失控扩散

由于SSB不含或含有有限数量的液体电解质,因此电池系统中不会产生大量的可燃气体,从而避免外燃,减少电池热失控中热量扩散的风险。此外,SSB相对较慢、较低地产生热量,有利于防止电池间的热失控传播,有效地保证了电池系统的整体安全。


4.3.2. 被动安全:增加热管理冗余

由于SSB具有较高的热力学稳定性,因此可以扩展系统的安全工作温度范围。此外,界面副反应自释放热可能会降低,双极式电池的设计可以减少电池系统的热量产生,从而更容易实现高效散热。另外,由于不会发生可燃气体泄漏,预计可以提高绝缘设计的效率和系统的完整性。


4.3.3. 主动安全:延长预警时间

由于SSB的热故障升温速率较低,电池系统从发生异常状态,检测到异常温度、电压和力学信号到完成热失控可能会经历较长的时间,因此预警系统可能具有较长的响应时间。


4.3.4. 主动安全:启用高级感知器警告系统

内置的传感器不适合液体锂离子电池,因为液体有机电解质通常对传感器具有腐蚀性。这个问题将在SSB中得到解决,从而实现电池系统的终身高精度现场状态监测。


05

结论


综上所述,尽管锂离子电池技术还在不断进步,各种安全策略的应用显著提高了电池的安全性和可靠性,但液体电解质仍然是进一步提高锂离子电池的能量密度和安全性的瓶颈。理论上,SSB具有显著提高固有安全性的潜力,从而减少了对被动安全和主动安全措施的需要,如图4所示。随着先进的双极式电池设计和锂金属阳极的应用,SSB是实现高能量密度和高安全性的一种可行的技术途径。目前,固体电解质的电导率可以满足电池应用的基本要求。


图4 从LIB(a)移动到SSB(b)时,固有安全、被动安全和主动安全的变化。


关键的瓶颈是固体电解质和电极界面在许多方面(即化学、电化学、机械)的稳定性,以及电池的整体制造,仍需要巨大的突破。一种可能的途径是通过逐渐减少电池中液体电解质的比例(即通过原位聚合混合固液电池),从锂离子电池逐渐过渡到SSB,并最终得到ASSB。该技术路线的可行性已得到部分验证;例如,北京威狮新能源技术有限公司已成功实现了混合固液电池(360 W∙h∙kg-1)批量生产。这些电池将在今年年底前安装在电动汽车上。然而,由于各种技术路线仍在竞争,必须综合研究其安全失效行为和机理,以确定切实可行的SSB技术路线,在实际批量生产的早期积累足够的科学知识,确定安全特性,并设计相应的保护和预警措施,这将有助于推到SSB的快速应用。


END



智能制造IM 智能制造IM是e-works数字化企业网联合中国人工智能学会智能制造专业委员会、湖北省人工智能学会共同打造,为您带来智能制造领域前沿的资讯、技术、教程和实施案例.
评论
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 87浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 49浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 81浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 138浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 75浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 71浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 92浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 81浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦