PMOS开关电路常见的问题分析

原创 硬件工程师炼成之路 2024-02-26 08:01
作为硬件工程师,不管做什么产品,一般都会用类似下面的PMOS开关电路,而且一般用做电源控制。

这个电路看着比较简单,但是呢,在实际应用中,稍不注意的话,可能会出现下面的几个问题


1PMOS开关开启的一瞬间,前级电源电压跌落,或者直接被拉死


2PMOS开关开启的一瞬间,MOS管冲击电流太大,MOS管损坏


3PMOS开关由开启变为断开时,输出端Vout电压先降低,后上升,然后再下降,即下电波形出现回沟

下面就来说明下这些问题是如何产生的,以及如何解决。

 
电路基本原理

 
为了照顾下刚入门的同学,还是先来解释下电路的工作原理,以及各个器件的作用

 
先说工作原理


1、当控制信号PWR_EN为高时,三极管Q1导通,R2下端等于接GND。由于R1R2的分压作用,MOSM1Vgs会有压差Vgs=-Vin*R1/(R 1+R2),即M1最终会导通。


2、当控制信号PWR_EN为低时,三极管Q1不导通,那么R2下端相当于悬空。那么MOSM1的栅极会被R1拉到和输入电压Vin一样,即Vgs=0,那么M1最终状态会是不导通。


所以说,我们通过控制PWR_EN的高低,就能够控制PMOS M1的导通和关断,这也就是这个电路的基本原理。

 
再来看下每个器件的作用。

 

图所示,各个器件的作用应该都说清楚了吧,我们继续看前面提到的实际应用中,我们可能会遇到的几个问题。 

几个问题的解释及解决办法

 
1PMOS开关开启的一瞬间,前级电源电压跌落,或者直接被拉死

 
我们把这个电路做一个仿真,加上输入20V电压,电源内阻100mΩ,负载10Ω,负载滤波电容1000uFPMOS开通的瞬间Vin波形如下图(实验1):

可以看到,输入端Vin电源20V,在PMOS开启的时候,瞬间被拉到了11.8V

 
那么为什么会如此呢?

 
道理其实很简单,Vout网络接了一个很大的电容1000uF,开关打开的时候,输出电压Vout0V要上涨到20V,这个电容有就要从0V被充电到20V。如果开关的时间比较短,充电的电流就会比较大。

 
这一点也比较容易理解,电容从0V20V,被充入的电荷量Q=C*U,如果开关的时间是t,那么平均充电电流就是I=Q/t=C*U/t,电容量C是已知的,为1000uF,电压U=20V,所以说这个充电电流 I=1000uF*20V/t就反比于开关的开通时间

 
那充电电流大为啥输入电压就会跌落呢?我们要知道这个充电电流来源于源端,也就是电压源V2,我们联想下,工作中实际的电路,源端电源肯定不是理想的电源,总会有内阻,或者说线路上总会有阻抗,电流一大,必然会有压降,这个压降就会造成电压跌落。

 
需要注意,我仿真的时候,给电压源V2的内阻就是100mΩ,这也是为了模拟真实的场景,同时呢,也只有这样才能看到电源Vin有跌落的情况。如果不设定内阻,电源源V2是理想电压源,那么肯定是看不到电源跌落的。

 
很容易想到,如果我们把这个内阻设得大些,那么跌落得肯定更多。

我们试一下,将内阻Rser50mΩ,100mΩ,200mΩ,500mΩ做一个对比,一起看看跌落的情况。如下图(实验2),可以看到,50mΩ时,电压Vin只跌落到了15V左右,没有像100mΩ是跌到了11.8V这么多,而500mΩ时电压已经跌落到了6V左右。

前面说到,电容平均充电电流是I=Q/t=C*U/tC是负载的电容量,也就是说C越大,那么平均充电电流越大,源端内阻上的压降也越大,即电压跌落也会越大

 
我们也可以仿真来验证下,我们设定V2的内阻为100mΩ不变,负载端电容分别是100uF1000uF10000uF,结果如下图(实验3

可以看到,确实与我们的分析是一致的,100uF的时候,电压只跌落到了16.5V,相对于1000uF11.8V,还是要小不少的。

 
由以上可以知道,负载端电容量越大,是越容易发生电源跌落的情况的。但是呢?有时候我们的负载就是需要那么大的电容,那怎么办呢?

 
其实我们还可以调整开关的速度,我们可以通过调整R1R2C1的大小,来调整PMOS开关开通的时间。

 
根据前面的公式,I=Q/t=C*U/t,如果负载电容C固定了,电压U也确定了,我们可以通过调整电路,增大开关的开通时间t,也能降低充电电流的大小,最终也可以让电源跌落更小。

 
还是来仿真下,我们保持电源内阻为100mΩ,滤波电容为1000uF不变,R1R2保持10K不变。然后让开关MOSgs之间的跨接电容分别为100nF470nF1uF4.7uF,对比波形如下图(实验4

可以看到,100nF时跌落最多,跌到了11.8V,而4.7uF的时候,跌落是最小的,另外一方面,我们也可以看到下冲的宽度,100nF时,宽度是最小的,说明此时开通速度最快。

 
我们保持电源内阻为100mΩ,滤波电容为1000uF不变,gs跨接电容为100nF不变,单独调整下R1R2,让其分别等于10K47K100k470k,看下效果,仿真如下图(实验5

可以看到,效果和调节gs之间的电容差不多,在电阻调整到470k之后,输入端电压跌落已经比较小了。

 
好了,相信到这里,你应该已经知道了为什么PMOS开启的时候,输入电压有跌落了,以及出现这种情况之后,我们只需要调整R1R2Cgs就好了。

 
需要注意的是,以上只是为了简单说明道理,实际电路应用过程中要更为复杂。比如说我仿真内阻都是用的100mΩ,实际电路中电路不仅仅有内阻,还有电感,这些都会造成输入端有压降,但是另外一方面,输入端也会有电容,开通瞬间,输入端的电容也会给负载电容提供电流,最终跌落可能也不明显。有时呢,输入源端可能有限流保护,如果开通瞬间拉取电流过大,那么会造成前级过流保护,导致电源被拉死,这些都需要具体情况具体分析。

 
好了,关于这个跌落的问题就说到这里了,下面继续其他问题。

 
2PMOS开关开启的一瞬间,PMOS烧毁

 
提到MOS烧毁,一般来说,就是其非工作在SOA区(安全工作区,Safe operating area)。

 
显然,在这个场景,容易出现的就是MOS管过流了。我们还是以上面的仿真电路为例子,看下导通时MOS管的电流情况。

 
仿真条件:PMOS型号为SI4425,电压源V2=20V,内阻=100mΩ,负载电容1000uFR1=R2=10kgs端跨接电容100nF

 
波形如下图(实验6

 

可以看到,MOS管瞬间最大电流已经达到了80A+,这个电流太大了,MOS管有风险,为什么这么说呢?我们可以看下使用PMOSSI4425的手册,可以看到,其最大允许的电流是50A
这一点,我们也可以从其SOA曲线上看出来。

此时,这个PMOS超规格使用了,并没有工作在SOA区间,是可能会损坏的。

 
那怎么办呢?选更高电流的PMOS吗?当然,这是一个可选的方案,不过呢,电流更高的PMOS价格肯定会更高的。此时我们可以调节下外围电阻或是电容,让PMOS更慢开通,这样可以将电流降下来。

 
按照前面说的,我们可以调整R1R2C2gs间跨接电容)达到这个目的。我们将gs间跨接电容分别调至470nF1uF4.7uF,对比看看电流的情况,如下图(实验7)。

可以看到,在Cgs=1uF的时候,此时Ids最大只有40A,而PMOS SI4425最大瞬间电流可以过50A,仅从电流Ids来考虑,是OK的,并且满足80%的降额(50A*0.8=40A)。

 
假如我们选定Cgs=1uF,我们还需要看下此时的功率是否有超标(结合SOA曲线看),从曲线上看,MOS管开通时间约为1ms,这期间最大功率约为280W,如下图。

假设这个PMOS应用场景是单脉冲(即非周期性开通,只是偶尔开通一次),从手册看到其1ms时归一化热阻系数r(t)=0.007

芯片正常热阻是Rja=50/W,最高结温是150℃,假设环境温度是25℃,那么其1ms能抗的瞬间功率是Pmax={(150-25)/Rja}/r(t)=  357W

PMOS  SI44251ms瞬间能扛的功率是357W,而将Cgs电容调整到了1uF之后,实际功率是280W,因此并没有超过PMOS的功率限制,也即是说其工作在了SOA区,是OK的。

 
综上所述,在Cgs100nF的时候,PMOS没有工作在SOA区,而我们调整Cgs电容到1uF之后,PMOS就能工作在SOA区,因此就不会出现损坏的问题了。

 
以上是从仿真的角度看PMOS有没有损坏的风险。实际在我们电路应用中,对于这种功率PMOS做开关,我们一般也是要去测量PMOS开通时的电压和电流曲线,以此来判断是否是安全的

 
再来说一个我曾经遇到过的奇特现象,也就是第3个问题。

 
3PMOS开关由开启变为断开后,输出端Vout电压先降低,后上升,然后再下降,即下电波形出现回沟

 
先看下这是个什么现象,如下图,在PMOS断开的时候,输出电压Vout出现回沟

这个波形是用下面这个电路仿真出来的(实验8

相对于前面的PMOS开关仿真电路,其实没有差异,仅仅是我将负载换成了一个开关电路而已,那为什么改变了负载之后,Vout的下电波形就不正常了呢?遇到这种情况我们该如何调整呢?

 
原因其实也不难理解,就是PMOS从导通到关断,总有一个过程,PMOS的阻抗会从接近于0(导通)到电阻无穷大(断开),也就是说存在一段时间,PMOS的会有一定的阻值,而负载也非恒定电阻。在Vout下电过程中,负载获得的电压下降到一定程度,负载电路可能因为欠压突然停止工作,其所需电流急剧减小,即其等效电阻突然变大,那么会导致其获得的分压变大,这个时候就会出现上面的情况,Vout电压又涨上去了。

 
上面的过程简单画个示意图如下所示:Vout的电压等于VinPMOS和负载上面的分压,如果负载RL突然变大,那么就有可能出现Vout突然上涨的情况。

经过上面的分析,应该很容易想到,出现回沟的地方,应该就是PMOS从导通到关断切换的时刻,也就是PMOSVgs电压等于其Vgsth的时候,关于这一点,我们也可以从仿真波形中看出,如下图所示。

回沟出现的地方,就是PMOSVgs=-1V的时候,我们可以从SI4425手册中看到,该PMOSVgsth就是-1V~-3V,印证我们前面的分析没毛病。
那么问题又来了,我们如何解决这个回沟的问题呢?

 
很多时候,我们让这个PMOS更快的关闭就能解决了,比如我们将PMOSgs跨接的电容从100nF调整到10nF,可以看到回沟基本没有了(只有500mV左右,实际电路一般不影响使用),如下图所示(实验9

我们也可以在输出端加一个滤波电容,这样可以避免负载等效RL突然变大

 
这个原理是这样的:加了滤波电容后,等效负载就变成了原本的RL和新加的电容阻抗的并联,所以哪怕原本的RL突然变得很大,因为有电容阻抗的存在,总的负载阻抗也不会变得很大(不会超过电容的阻抗)。我们现在讨论的是pmos关断的瞬间,这个过程是短暂的,信号可以看成是交流,因此电容不可看成是开路,它也构成了总的阻抗的一部分。所以,只要电容值合理,是可以解决电容回沟的问题的。

 
印证下,我们在上面的电路的负载端加一个1uF的滤波电容,仿真如下(实验10

可以看到,Vout此时完全没有回沟了,下电波形非常好。

 
小结

 
本期内容就写到这里了,可以看到,小小的PMOS电路,其门道也是不少的,毕竟我们都没有办法固定一个电路去适应所有的应用场景。一个电路,可能用在这个场景没问题,用在其他场景就出问题了。当然,这也并不可怕,我们只需要理解问题的原因是什么,结合测试,根据波形,不断分析优化,也就能设计出安全可靠的电路了。

 
以上所有的仿真源文件,我都放置在了我的网盘,关注我的微信公众号“硬件工程师炼成之路”,在后台回复“炼成之路”,就可以下载了,放置在目录:炼成之路-->器件-->08-MOS-->PMOS开关电路

 
以上内容纯属个人观点,如有问题,欢迎留言交流。

推荐阅读:

1、还在用CAM350吗?

2、我写的东西都在这里了

3、PCB Layout时,MOS管栅极串联电阻放哪儿?

4、LC串联谐振的意义-LC滤波器-MOS管G极串联电阻作用

5、MOS管电流方向能反吗?体二极管能过多大电流?


硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 339浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 53浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 434浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦