【光电集成】基于有限元模型的IC卡芯片受力分析研究

今日光电 2024-02-24 18:00

今日光电

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!


----追光逐电 光赢未来----

基于有限元模型的IC 卡芯片受力分析研究

吴彩峰 王修垒 谢立松

北京中电华大电子设计有限责任公司,射频识别芯片检测技术北京市重点实验室

摘要:

在智能卡三轮测试中,失效表现为芯片受损,本文基于有限元模型来研究智能 IC 卡(Integrated circuit card)芯片受力分析与强度提升方法,针对其结构尺寸参数变化时对芯片的机械强度影响做了相关有限元仿真,分析芯片的受力情况,从芯片大小、芯片厚度、芯片偏转角度、EMC 层厚度、PVC 厚度、Lead frame 厚度、芯片粘接胶厚七个因素,对比了 IC 卡单因素尺寸参数变化对芯片应力的影响,并依据正交设计表分析 IC 卡的七个因素的参数变化时芯片的受力情况,得到 EMC 层厚度、Lead frame PVC 卡片厚度的变化对芯片承受的最大应力影响显著,且随着这三个部件厚度的增加芯片所受最大应力减小的结论,为有效提升 IC 卡芯片的机械强度提供了方法。

引言

GB/T 17554.3-2006 识别卡测试方法第三部分带触点的集成电路卡及其相关接口设备》标准规定需要对 IC 卡(Integrated Circuit Card,集成电路卡)的机械强度进行测试 [1] 

该标准规定,芯片面积大于 4mm 2 时,机械强度测试方法为进行三轮测试,而小于 4mm 2 时的测试方法为点压力测试。IC 卡卡片的实际生产控制中,无论芯片面积是否小于 4mm 2 ,卡片生产使用相关环节均安排进行三轮测试。

三轮测试的严重失效一般是在压力作用下,IC卡中封装的芯片出现物理损伤。芯片承受的强度与IC 卡的各部件的物理规格有关,如芯片的大小、芯片厚度和封装时芯片的偏转角度等。在进行受力仿真过程中首先找到芯片在三轮测试过程中受力最大的危险位置,根据该位置分析 IC 卡各部件尺寸参数变化时芯片受力情况,并分析 IC 卡各部件的单因素尺寸参数变化对芯片应力的影响。本次仿真分析基于正交试验,共设计了 18 组试验。

 仿  ABAQUS 仿      ABAQUS 是一款有限元分析软件,具备强大的分析能力和模拟复杂系统的可靠性。软件包括丰富的、可模拟任意几何形状的单元库,并拥有各种类型的材料模型库。在复杂的固体力学结构力学系统中,能驾驭非常庞大复杂的问题和模拟高度非线性问题,本次仿真中涉及到了多部件的静态应力、位移分析和动态分析,涵盖了接触和几何两大非线性问题。ABAQUS 仿真软件可以实现多部件的快速建模并且求解的收敛性可以得到保障。

1 IC 卡有限元模型

1.1 IC 卡结构

IC 卡由芯片封装体(行业中常称作“模块”)和PVC 卡片组成,芯片封装体包括芯片、Lead frame、键合线、芯片粘接层、EMC 层(注塑胶,多为环氧塑封料)等组成,芯片封装体和 PVC 卡片空腔部分进行装配组成 IC [2] IC 卡实物图如图 1 所示、IC 卡结构示意图见图 2

1.2 IC 卡的材料力学参数

 1  IC 卡所用到的不同材料的力学参数。三轮测试用的轮子的弹性模量为 210 GPa,泊松比为 0.31

1.3 IC 卡有限元模型

IC 卡实际模型较为复杂,模型各部件存在尺寸跨度大的问题,若按照 IC 卡实物图进行有限元建模,建模难度大,因此对模型进行了相应的简化和等效。首先 IC 卡的各部件除了 EMC 层外,其他部件可以看作是薄板,实际情况中 EMC 层类似水滴型,这种形状在建模时难度较大,因此等效为矩形。IC 卡中的键合线因直径只有 25μ或更细,建模时特意进行了忽略。最终建立 IC 卡有限元模型如图 3

1.4 模型网格划分及网格收敛性验证

 IC 卡有限元模型涉及部件较多,有些部件不是主要关注部件,例如 PVC 卡片远离芯片的部分。因此对 PVC 卡片进行分区划分时,每个区域网格布种数量不一致。PVC 空腔部分要与 Lead frame和封装后芯片的胶体层接触,接触部分网格布种数量与 Lead frame 的网格布种数量一致,以保证在有限元仿真过程中应力和位移在接触面上很好地传递,使结果更加准确;对于主要关注部件—— 芯片,网格布种数量相应加密,芯片粘接层与芯片、Lead frame(含铜基材、环氧材料、粘接剂)的网格布种数量一致 [3] 

对模型进行网格收敛性验证,选出合适的网格数量进行划分。网格收敛性计算通过改变芯片、Lead frame 等各个部件的网格布种数量,查看芯片应力变化,当网格数量和计算时长适中且计算结果没有太大改变时,该网格数量即为仿真时所适用的数量。表 2 为网格收敛性验证对比表。

根据表中数据最终选择的有限元网格模型包括217319 个单元、283271 个节点。图 4 是有限元模型网格划分示意图。

基于动力学的三轮测试仿真结果分析

2.1 动力学仿真参数设置

根据《GB/T 17554.3-2006 识别卡测试方法第三部分带触点的集成电路卡及其相关接口设备》,三轮测试 IC 卡机械强度要求设置动力学仿真所需参数,包括 IC 卡插入速度、IC 卡插入初始位置和终止位置的确定等。以下是 IC 卡三轮测试操作要求:

1)将带有芯片的卡片放在机器测试滚轮之间,将芯片在三个钢制滚轮间循环滚动;

2)芯片面向上时,滚动 50 次;

3)芯片面向下时滚动 50 次,循环频率均为0.5 Hz

4)卡片滚动时芯片上需加一定重量的力,经过往复循环测试后验证卡片中的芯片功能是否正常。标准中规定所加的力是 8 N,实际测试时可以进行 8N12N15N 等强度的测试。

 5  IC 卡插入初始位置和终止位置示意图。

从图 5 中可以看出,三个测试滚轮的直径为10mm,测试过程中滚轮厚度方向中心线与 IC Lead frame 中心线保持一致,IC 卡插入初始位置上侧滚轮垂直方向中心线与 IC 卡一侧边缘相距0.1mm,最终插入 40mm,由插入距离和三轮测试循环频率可以算出 IC 卡插入速度为 40mm/s,测试过程中上侧滚轮对 IC 卡施加垂直向下 8N 的力。IC 卡的一端受三轮测试仪夹持装置的夹持进行插拔测试,这也是仿真过程中对 IC 卡施加的边界条件。

2.2 动力学仿真及危险位置确定

整体仿真思路:将 IC 卡金属面向上和金属面向下的测试过程进行动力学仿真,提取 IC 卡和芯片动态应力云图,找到芯片应力最大位置,将该位置视为危险位置,对危险位置进行重新建模,通过静力学仿真对比不同工况下芯片的受力情况。通过动力学仿真找到的两组危险位置如图 6 和图 7 所示:

 3 展示了金属面向上,IC 卡插入 0.375s 处芯片受力更大,将此位置确定为危险位置,基于动力学仿真的结果,对卡插入 0.375s 时刻的位置建模,进行后续的多因素仿真分析。

基于静力学的IC 卡多因素仿真结果分析

3.1 仿真中考虑的设计因素及设计水平

考虑多因素对芯片应力的影响时选用正交设计法,原理是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备均匀分散、齐整可比的特点,最后可以用极差分析方法对结果进行处理,得到各因素的影响主次关系。

本次正交设计考虑的有七个因素,包括芯片大小(单位 mm,记为因素①)、芯片厚度(单位μm,记为因素②)、芯片偏转角度(单位。 ,记为因素③)、芯片粘接胶厚度(单位μm,记为因素④)、EMC 层厚度(单位μm,记为因素⑤)、PVC 厚度(单位μm,记为因素⑥)、Lead frame(常称作“条带”,单位 μm,记为因素⑦)等,每个因素选取三个水平,每个水平的取值情况见表 4,各个取值是结合实际产品规格及生产经验获得。

查询正交设计表格,本次选择的是一个 18 次的正交试验。

因智能卡应用广泛,如银行卡、电信卡、社保卡等,以及各个企业对质量管控的差异,实际确定产品质量时,经常进行不同工况下的试验。因此我们对每组试验安排了 3 个工况下的静力学仿真:上侧滚轮施加 8N12N  15N 的工况,累积共进行 54 次仿真运算。通过后处理提取芯片应力云图,并找到芯片上所受最大应力,记录在表 5 中,并对结果进行极差分析,以上侧滚轮施加 8N 的力为例进行分析,找到各因素的影响主次关系。

以上侧滚轮施加的不同机械测试强度计算各因素的每一个测试强度的应力总和 K(每因素的水平1、水平 2、水平 3,分别记为 K1K2K3)、计算各因素不同水平下的每一个测试强度平均应力 k(每因素的水平 1、水平 2、水平 3,分别记为 k1k2k3)、计算各因素不同水平下的的每一个测试强度平均应力的极差 RR= max k1,k2,k3-mink1,k2,k3})。依据值的大小关系,判断各因素对机械强度的影响程度。判断规则为 R 值越大,影响程度越大。Kk计算结果如表 6
 8N12N15N 分别计算 R 值,结果如图 8所示:

综合 8N12N  15N 的分析结果可以看出,EMC层、PVC 卡片和 Lead frame 厚度的变化对芯片应力的影响较大,而芯片粘结层厚度的变化对芯片应力无较大影响。随着上侧滚轮施加力的增大,芯片上所受的应力也呈增大的趋势,但是上侧滚轮施加不同大小的力时,各个因素对芯片所受最大应力的影响趋势相同,通过 k 查看各因素对芯片最大应力的影响趋势,如图 9 所示,限于篇幅,图 9 只列出 EMC层、PVC 卡片和 Lead frame 厚度三个因素的趋势。

由图 9 可以看到,芯片最大应力随 EMC 层、PVC 卡片和 Lead frame 厚度的增加而减小。图 9 未展示的因素情况为:芯片最大应力随芯片偏转角度的增加先减小后增大,随芯片大小、芯片粘结层和芯片厚度的增加而增大。

3.2 芯片有关因素最大应力的影响分析

因为当前芯片的工艺技术、芯片的尺寸等更新迭代较快,而智能卡所用的封装材料几乎没有迭代。为了给予实际生产更多指导意义,特对芯片的应力情况单独进行了如下几个方面的分析。

3.2.1 芯片厚度对芯片最大应力的影响趋势分析

之前仿真分析时变化芯片厚度保持 EMC 层总厚度不变,如图 10 所示,考虑到 EMC 层和芯片的厚度变化可能存在交互作用,因此采用经典层合板理论并做了两组对比仿真,即固定 EMC 3 厚度 T 3 和固定 EMC 层总厚度 T  ,变化芯片厚度查看芯片所受最大应力的变化趋势。

固定 EMC 层总厚度( )时,仿真得到了三组芯片不同厚度时芯片的最大应力。

固定胶体上 EMC 3 层总厚度时,仿真得到了三组芯片不同厚度时芯片的最大应力。

以上数据记录如表 7 所示。

由表 7 可以看到,固定 EMC 层总厚度时,芯片最大应力随芯片厚度增加而增大,当固定 EMC 3 层厚度时,芯片最大应力随芯片厚度增加而减小。

3.2.2 不同工况下芯片的受力分析

在仿真软件中,查看不同工况下芯片应力云图,发现当上侧滚轮施加的力增大时,芯片所受应力整体呈现增加趋势,但是应力分布趋势相同,具体受力情况读者可以参考表 5 进行分析。

在仿真软件中,对比所有试验组的芯片应力云图,发现芯片受力较大的面是与 EMC 层接触的面,且芯片所受最大应力处于该面或者该面的边角处。

3.2.3 不同偏转角度时芯片的受力分析

选取芯片大小 3mm×2.3mm,在仿真软件中,对比不同偏转角度时芯片的应力云图,发现芯片所受最大应力先减小后增大。芯片旋转到 45 时,芯片所受应力最小。

3.2.4 芯片不同大小时芯片应力分布情况

选取偏转角度为 0 ,在仿真软件中,对比芯片不同大小时芯片的应力云图,发现应力在芯片表面的分布情况不受芯片大小的影响。

结论

通过以上分析,可取得以下结论及 IC 卡集成电路芯片机械强度提升方法:

1EMC 层、Lead frame  PVC 卡片厚度的变化对芯片最大应力影响显著,且随着这三个部件厚度的增加芯片所受最大应力减小,芯片粘结层厚度变化对芯片最大应力无较大影响。因此增加 PVC 厚度、EMC 层厚度、Lead frame 的厚度可以提升智能卡机械强度的表现。特别是 EMC 层厚度,在封装条件允许的情况下,应采取较大的 EMC 层厚度值。

2)芯片与 EMC 层接触的面是芯片受力较大的面,且芯片所受最大应力在该面或该面的边角处。推测对芯片表面进行适当的改善,也是提升智能卡机械强度表现的方法。

3)芯片大小相同时对芯片进行偏转,芯片所受最大应力先减小后增大,且芯片受力较大的区域与滚轮下压的区域一致。因此,芯片封装时适当旋转角度,例如 45 ,可以提升智能卡机械强度的表现。

4)当固定 EMC 总厚度时变化芯片厚度,随着芯片越厚芯片最大应力越大;当固定 EMC 3 厚度时变化芯片厚度,随着芯片越厚芯片最大应力越小。因此,芯片厚度增加,可以提升智能卡机械强度的表现,在芯片封装时在情况允许下,应采取较大的芯片厚度值。
来源:半导体封装工程师之家


申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566

评论
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 108浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 64浏览
  • 车机导航有看没有懂?智能汽车语系在地化不可轻忽!随着智能汽车市场全球化的蓬勃发展,近年来不同国家地区的「Automotive Localization」(汽车在地化)布局成为兵家必争之地,同时也是车厂在各国当地市场非常关键的营销利器。汽车在地化过程中举足轻重的「汽车语系在地化」,则是透过智能汽车产品文字与服务内容的设计订制,以对应不同国家地区用户的使用习惯偏好,除了让当地车主更能清楚理解车辆功能,也能进一步提高品牌满意度。客户问题与难处某车厂客户预计在台湾市场推出新一代车款,却由于车机导航开发人
    百佳泰测试实验室 2025-01-09 17:47 41浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 104浏览
  • 1月9日,在2025国际消费电子展览会(CES)期间,广和通发布集智能语音交互及翻译、4G/5G全球漫游、随身热点、智能娱乐、充电续航等功能于一体的AI Buddy(AI陪伴)产品及解决方案,创新AI智能终端新品类。AI Buddy是一款信用卡尺寸的掌中轻薄智能设备,为用户带来实时翻译、个性化AI语音交互助手、AI影像识别、多模型账户服务、漫游资费服务、快速入网注册等高品质体验。为丰富用户视觉、听觉的智能化体验,AI Buddy通过蓝牙、Wi-Fi可配套OWS耳机、智能眼镜、智能音箱、智能手环遥
    物吾悟小通 2025-01-09 18:21 44浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 87浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 118浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 99浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 100浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 86浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 119浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 116浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 124浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦