未来10年先进半导体封装的演进路线

原创 TechSugar 2024-02-23 08:01


半导体封装领域,为了实现超越摩尔定律(More Than Moore)模式,2.5D和3D封装已成为增长最快的先进封装技术之一。


事实上,能与2.5D和3D封装同日而语的技术还包括:异构集成、扇出型、FOWLP、FOPLP、硅通孔、玻璃封装、封装天线、共封装光学器件、RDL等等。这些技术正在为人工智能、高性能计算(HPC)、数据中心、自动驾驶汽车、5G和消费电子等领域带来更大的性能提升。


不过,寸有所长尺有所短,我们来看看行业专家对2.5D和3D先进封装及相关技术的一些观点。


半导体封装的演进


最早的半导体封装是1D PCB级别,现在已发展到晶圆级别的先进3D混合键合,实现了个位数微米的互连间距和1000GB/s带宽的高能效指标。


引领这一演变的四个关键参数有四个:一是功率,实现效率的优化;二是性能,提高带宽,缩短通信长度;三是面积,满足HPC芯片所需的要求,以3D集成实现更小尺寸;四是成本,通过不断减少替代材料,提高制造效率。


2.5D和3D封装技术融入了各种封装工艺。在2.5D封装中,根据中介层材料的不同,分为硅基、有机基和玻璃基中介层;而在3D封装中,微泵技术的发展进一步实现了更小的间距尺寸。另外,通过采用混合键合技术(如直接连接Cu-Cu)可实现个位数的间距尺寸,标志着该领域的一次重大进步。


半导体封装的演进


2.5D封装的三个关键


事实上,不管是哪种先进封装,都会有其自身的优缺点。2.5D封装主要有硅、有机和新近出现的玻璃等材质。在硅基板上,可以将芯片与中介层连接,中介层与芯片之间利用硅通孔连接;有机封装则利用有机基板作为基材,具有成本低、可弯曲等特点。另外,耐高温、透光性好的玻璃基板也可用作封装基材。


IDTechEx的Yu-Han Chang博士和James Jeffs博士认为,硅中介层利用全无源硅晶圆,在基于扇出的模塑化合物或具有空腔的衬底中采用局部硅桥形式,通常用于HPC集成的2.5D封装,以满足最精细的路由功能。但与有机材料等替代品相比,硅在材料和制造方面面临着成本的挑战及封装面积的限制。


为了解决这一问题,局部硅桥的形式日渐增加,只在精细功能至关重要的地方战略性地使用硅。“预计硅桥结构将得到更多使用,特别是在硅中介层面临面积限制的情况下。”他们表示。


有机材料具有低于硅的介电常数,有助于降低封装中的RC(阻容)延迟,是硅更具成本效益的替代品。这些优势推动了基于有机物的2.5D封装。


不过,有机物的一个主要缺点是,与硅基封装相比,其相同水平互连功能的减少限制了其在HPC应用中的采用。在成本方面,有机RDL(再分配层)适用于成本敏感的产品,板级封装将进一步利用成本效益,而玻璃封装有望成为硅的廉价替代品。


2.5D封装技术发展趋势


要进一步提高半导体封装的性能,需要综合考虑多个方面:

一是介电材料:作为半导体封装中的重要组成部分,其性能直接影响封装的电气性能和可靠性。选择具有高绝缘性、低介电常数和介质损耗的介电材料有助于提高封装性能。


二是RDL:RDL是半导体封装中的一种关键技术,可以将芯片引脚重新分布,以适应封装的需求。通过优化RDL层的厚度、材料和工艺,可以提高封装的电气性能和可靠性。


L/S(线宽和线间距):L/S是半导体封装中描述互连特征的参数。减小L/S可以增加互连密度,提高封装性能。不过,过小的L/S可能导致制造难度和可靠性问题,因此需要在两者之间进行权衡。


凸点尺寸:凸点是芯片与封装基板之间的连接点。减小凸点尺寸可以提高封装的电气性能和可靠性,同时也需要保证凸点的强度和连接的稳定性。


芯片尺寸和形状:减小芯片尺寸可以提高封装密度,但也需要考虑芯片的散热性能和电气性能;而采用复杂形状的芯片可能增加封装的复杂性和难度。


封装类型:选择合适的封装类型也是提高半导体封装性能的关键。例如,2.5D和3D封装技术可以提高芯片性能、降低功耗、缩小体积和降低成本。


制造工艺:优化制造工艺可以提高封装的可靠性和稳定性。例如,采用先进的材料、设备和工艺可以减小缺陷和不良率,提高生产效率。


3D封装的两大技术


对于3D封装,Yu-Han Chang博士和James Jeffs博士认为,第一个重要技术是微泵。此前,基于热压键合(TCB)工艺的微泵技术已经比较成熟,在各种产品中都一直在用。其技术路线在于不断扩大凸点间距。不过,这个过程中有一个关键挑战,因为较小的焊球尺寸会导致金属间化合物(IMC)形成增加,降低导电性和机械性能。


此外,紧密的触点间隙还可能导致焊球桥接,在回流期间存在芯片故障风险。由于焊料和IMC的电阻率比铜高,在高性能组件封装中的应用面临限制。


第二个重要技术是混合键合,包括通过将介电材料(SiO2)与嵌入金属(Cu)结合以创建永久互连。Cu-Cu混合键合的间距低于10μm(通常约为1µm左右),其优点包括扩展I/O、增加带宽、增强3D垂直堆叠、提高功率效率,由于没有底部填充也可以减少寄生和热阻。其挑战在于,这种先进技术的制造复杂性和更高的成本。


凸点制造技术的发展


Cu-Cu混合键合是一种无凸点键合方法,它利用铜金属之间的直接键合,不需要使用凸点或其他中介层。在Cu-Cu混合键合中,铜金属之间的直接键合是通过表面处理和热压键合技术实现的。


与传统的凸点键合方法相比,Cu-Cu混合键合不需要制造凸点,因此可以简化制造工艺,降低成本并提高封装密度,还可以提供更稳定的电气连接和更好的热传导性能。


例如,三星手机用的Cu-Cu混合键合背照式CMOS图像传感器采用内存+逻辑3D堆叠,实现了堆叠DRAM裸片的高带宽存储器(HBM)。其好处是更大的I/O和更大的带宽、更多3D垂直堆叠、高功率效率、无填充不足减少了寄生,以及降低了热阻。当然,这种方法有一定制造难度,成本也比较高。


不同封装技术的最小凸点间距


先进半导体封装技术趋势谁来驱动?


与单片IC相比,先进半导体封装有助于加快产品上市并降低成本。先进互连技术则可以提供低功耗、低延迟和高带宽连接,同时使集成电路良率更高,系统性能更好,还可以在同一封装中异构集成不同的硅IC或组件。


HPC芯片集成是推进先进封装的一大动力。处理器-内存差需要提高内存带宽来弥合,2.5D封装的HBM可以做到这一点。新兴的Al训练HPC也需要更多带宽,在逻辑上3D堆叠SRAM可进一步提升带宽,堆叠也能继续缩小3D键合间距,满足更高的带宽要求。


HPC芯片集成趋势


由于HPC先进封装的互连长度很短,将存储器3D堆叠在逻辑之上或反之亦然,这被认为是实现超高带宽的最佳方法。不过,其局限性包括逻辑IC中用于功率和信号的大量硅通孔(TSV)需要大量占位面积,管理逻辑IC存在高散热问题。


针对这些问题,发展路径有两条:一是利用TSV实现3D堆叠,主要用于存储器,使逻辑IC的I/O数量减少;二是开发2.5D封装技术,以有效耗散来自暴露的逻辑IC的热量。这些短期解决方案可在充分实现3D堆叠的潜力之前实现同构和异构集成。


另一大动力是数据中心服务器加速器,包括GPU小芯片封装(如GPU+GPU、GPU+Cache)、GPU+HBM集成(GPU+HBM)、FPGA小芯片集成等。2022年,相关封装单元的出货量为1920万个,根据预测,到2034年将超过2022年七倍以上。


数据中心服务器加速器封装单元出货量走势


先进封装的未来挑战


未来,先进封装的挑战主要来自一些新技术,如玻璃封装。2023年9月,英特尔公布了其基于玻璃的测试载具封装,引起了人们极大的兴趣。玻璃基板具有耐高温、透光性好等特点,包括可调的热膨胀系数(CTE)、高尺寸稳定性和光滑平坦的表面,这些特性使其成为一种很有前途的中介层候选者,其布线特性有可能与硅媲美。


不过,尽管大量研究显示了玻璃封装的好处,但用它作为封装基板的规模仍然很小。制造问题已无法回避,玻璃的一个关键优势是其光滑平坦的表面,可以更容易地在顶部沉积高密度RDL层。


不过,几家公司都提到,他们采购的玻璃基板的平整度无法与硅晶圆相比。当在顶部沉积RDL层时,平整度是巨大的挑战。还有标准化问题,涉及材料、工艺、设备、测试和可靠性等。只有建立一套标准化的体系,才能确保产品的质量和可靠性。


又如CPO(共封装光学)技术,它是一种将光模块和电芯片封装在一起的技术,具有低功耗、高带宽的特点。其最大的挑战是成本,除了光学元件成本和研发成本,还包括BOM(物料清单)成本、装配吞吐量成本和良率优化成本。


其中最关键的是随着带宽需求的不断增长,光纤和插座的成本越来越高。解决方案是开发生态系统,优化光学元件设计;加强产业链合作,优化生产流程,提高光纤制造的吞吐量和产量,降低生产成本。当然,对于玻璃封装技术,这方面也同样不容忽视。


END

TechSugar 做你身边值得信赖的科技新媒体
评论
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦