狂砸670亿美元,日本意图再次成为全球芯片强国


集微网消息,日本正投入数百亿美元进行一场漫长的赌注,以重振其芯片制造实力,使其经济免受日益加剧的中美紧张局势的影响。

挖掘机和卡车在冰雪覆盖的地面上纵横交错,一座未来工厂的建设工作仍在继续,厂房前是一片草地。这一开发项目正在改变这个以农业、军事基地和新千岁机场闻名的地区的面貌,该项目还旨在改变日本芯片业的面貌。

新成立的日本本土企业Rapidus希望在2027年从零起步大规模生产最先进的2nm逻辑芯片。按照行业标准,这对在半导体生产方面远远落后于海外竞争对手的成立仅18个月的日本企业来说,是一个难以置信的挑战。

但是,随着中美为获得最新的芯片制造技术和设备而竞争,日本察觉到了机会,那就是利用美国对供应链安全的担忧,重新回到它曾经主导的游戏中来。

先进芯片将成为人工智能(AI)和电动汽车等十几项关键技术的基础。全球生产的很大一部分都集中在中国台湾和韩国,这使得未来的供应很容易受到地区紧张局势的影响。

负责启动新代工厂的Rapidus高管Atsuo Shimizu表示,“这涉及到地缘政治和经济安全因素。日本要想生存下去,就必须在技术上成为全球参与者。”

日本已经展出了它的实力。在不到三年的时间里,日本已拨出约4万亿日元(约合267亿美元)的专款,用于重振半导体产业。日本首相岸田文雄的目标是,在私营部门的支持下,为该产业提供的财政支持最终将达到10万亿日元(约670亿美元)。目标之一是到2030年将日本国产芯片销售额增加两倍,达到15万亿日元以上,再次意图打造全球芯片强国

日本的新芯片战略有两个主要方面。首先,日本正努力将自己重新打造成为成熟芯片的主要生产地,通过提供高达一半建设成本的慷慨补贴,吸引该行业最大的海外公司来日本投资;第二方面,也是更雄心勃勃的一部分,是北海道的Rapidus项目,旨在恢复日本在硅芯片领域的领先地位。

日本经济产业省(METI)资讯科技业部门主管、该战略的设计者之一Kazumi Nishikawa说,“为什么我们为芯片做了这么多?老实说,是因为中美对抗,如果来自中国台湾的芯片供应停止,将给各地带来数万亿美元的负面影响,经济将崩溃。”

日本已经在其战略的第一个方面即大部分取得了一些成功。全球最大的芯片制造商台积电很快意识到,与美国或其他国家/地区相比,由日本提供部分资金的芯片项目启动速度要快得多。

通过利用世界领先制造商的专业技能,日本希望重建与芯片相关的生态系统,为地区经济提供就业机会和新的增长点。同时,这些举措将有助于加强日本作为以美国为首的全球供应链中的重要盟友的地位,该供应链致力于保持从智能手机、汽车到最新导弹系统等各种产品的重要半导体生产线的运转。

日本战略的第二部分的命运似乎不那么确定。Rapidus项目既让人兴奋,也让人怀疑。它的成功取决于实现技术上的巨大飞跃,但对最终产品的成本和可靠性却知之甚少,也不知道是否会有买家客户。即使是行业领导者也在努力实现这一目标。

好的一面是,日本这次可以把美国当作盟友,而不是技术上的敌人。

作为Rapidus项目的一部分,IBM正在纽约奥尔巴尼培训约100名资深日本工程师,让他们尽快掌握美国前沿的芯片技术。

美国驻日本大使拉姆·伊曼纽尔(Rahm Emanuel)说,“我们是伙伴、盟友、合作者,要确保我们的国家安全和经济安全保持一致,因为威胁来自其他地方,比如中国大陆。我们同舟共济,朝着同一个方向划桨。”

日本的战略标志着与以往支持本国芯片产业的努力不同,以往主要是假定本国芯片产业不需要外部帮助,结果以失败告终。

除了台积电之外,美光科技、ASML和三星也在日本投资生产或研究设施,因为这些公司都在寻找最佳交易,以便在不确定的世界中巩固其未来的产出。

日本的援助速度与美国的政策僵局形成了鲜明对比。2022年美国《芯片和科学法案》(2022 Chips and Science Act)预留了390亿美元的直接补贴,用于加强美国的制造业,但第一笔15亿美元的大额补贴直到近日才公布。劳动力和成本方面的挑战也推迟了台积电位于亚利桑那州的新工厂的投产。在德国,预算动荡引发了对台积电和英特尔补贴的担忧。

总部位于比利时的微电子研究中心IMEC CEOLuc Van den hove说:“日本这次采取了大胆的做法,实施了非常迅速的决策。回顾20年前或15年前,当时的政策要封闭得多,尤其是来自政府的政策。”

台积电有充分的理由取得成功。其第一家工厂的产品(12nm到28nm逻辑芯片)技术已经成熟。熊本位于日本南部的九州岛,那里有一个由大约1000家相关技术公司组成的生态系统,还有客户,包括日本的汽车制造商。

台积电今年2月早些时候正式宣布其第二家代工厂将在附近生产6nm到7nm芯片。日本自民党半导体小组秘书长、立法委员Yoshihiro Seki表示,到2037年,来自代工厂的税收收入很可能与政府最初的支出相抵。

日本成为具有吸引力的地点还有其他原因。其拥有纪律严明的劳动力和可靠的服务。日元汇率跌至几十年来的最弱水平,也使在日本建设生产基地的成本大大降低。

日本也是芯片制造中使用的一些化学品和设备的全球主要供应商。包括东京电子在内的一些日本供应商利用了经济安全担忧的另一面,抓住了中国大陆需求激增的机会,因为中国大陆希望在更多限制措施出台之前提升现有的技术水平。

虽然日本作为芯片制造基地的某些原因在日本北部同样适用,但情况却截然不同。Rapidus公司起步于一个早已被遗忘的制造地区,当地只有约20家与芯片制造相关的企业。

日本国家技术研究所的专业技术长期以来一直停滞在45nm的水平上,因此Rapidus要想在五年左右的时间里利用未经证实的IBM技术大量生产2nm芯片,看起来是一个非常艰巨的任务。即使Rapidus能够在2027年之前实现目标,台积电和三星也很可能已经以一定的产量进入市场,从而获得成本优势。

Shigeru Fujii曾在日本富士通(Fujitsu)担任芯片制造主管,在过去的几十年里,富士通输给了中国台湾和韩国的低价竞争对手。他还没有看到Rapidus能够打入残酷的全球市场的证据。他认为问题是会有客户吗?

Rapidus公司的Atsuo Shimizu说,这次将有所不同,他曾在Shigeru Fujii手下工作过。Rapidus将通过缩短定制芯片的交付时间来增加产品价值,不仅通过制造工艺,还通过帮助客户缩短耗时的设计过程。

Atsuo Shimizu表示,公司无法在商品化设备方面与台积电和三星竞争,因此该公司将更多地瞄准高端利基市场。技术的转变也会对Rapidus有帮助。公司设想的2nm芯片将使用GAA(Gate-All-Around,全环绕栅极)晶体管结构,而不是目前的FinFET结构,这将使公司更容易打入市场。他认为其能做到这一点。

到目前为止,日本已承诺拨款3300亿日元,并额外拨出6460亿日元作为支持Rapidus项目的基金。这些资金应能满足2万亿日元初始投资的一半,但这家私营公司尚未说明如何筹集剩余资金或在代工厂启动后扩大运营所需的额外3万亿日元。

与Rapidus获得的政府支持形成鲜明对比的是,日本企业界的反应却很冷淡。到目前为止,丰田汽车公司等大公司仅承诺为该企业提供73亿日元的资金。

商业智能行业分析师Masahiro Wakasugi表示,日本最新的芯片战略看起来比以往更加深思熟虑。但平衡有点偏向Rapidus和熊本。Rapidus面临的挑战是巨大的,成功与否或许不应取决于利润。如果它能在2027年之前制造出可靠的2nm芯片,那将是日本在经济安全方面的一次成功。

专家说,即使IBM为公司培训工程师,Rapidus也很难招聘到启动代工厂所需的1000名左右工程师和工人。在截至2019年的二十年间,日本芯片业流失了约30%的工作岗位,其在全球芯片制造市场的份额从50%以上下降到不足10%。根据日本经济产业省(METI)的数据,随着人口的减少,日本未来十年将至少缺少4万名工人。

Takashi Yunogami是日立公司的前工程师,他猛烈抨击日本政府过去的举措,他把Rapidus的2nm目标比作棒球界的小球员试图一夜之间变成超级巨星大谷翔平(Shohei Ohtani)。

不过,除了IBM的支持外,总部位于加利福尼亚州的泛林集团和IMEC也计划在北海道设厂。Rapidus还与加拿大的Tenstorrent公司达成协议,共同开发人工智能设备中的半导体IP。

日本经济产业省的Kazumi Nishikawa说,Rapidus面临的风险和挑战太多,它仍处于研发阶段。

尽管如此,日本的巨额补贴表明,日本经济产业省再次下定决心,要利用机会夺回日本的部分芯片实力。这也反映了一种观点,即在芯片技术上砸钱总比没有任何应急计划要好。

种种国际事件都提醒世界,确保芯片供应和加强防御系统至关重要。

备注:文章来源于网络,版权归原作者所有,信息仅供参考,不代表此公众号观点,如有侵权请联系删除!

———— /END / ————



往期推荐

91亿!瑞萨电子收购Altium!


7万亿美元!OpenAI要做芯片!


美国第三笔补贴确认 将向格芯提供15亿美元补贴


三星电机将重点投资汽车MLCC,与日本村田竞争




关于AMEYA360


AMEYA360商城(www.ameya360.com)上线于2011年,现有超过3500家优质供应商,收录600万种产品型号数据,100多万种元器件库存可供选购,产品覆盖MCU+存储器+电源芯片+IGBT+MOS管+运放+射频蓝牙+传感器+电阻电容电感+连接器等多个领域,平台主营业务涵盖电子元器件现货销售、BOM配单及提供产品配套资料等,为广大客户提供一站式购销服务。



点击下方“阅读原文”,询价吧! 

皇华电子元器件IC供应商 上海皇华信息科技有限公司研发方案部门,由多名实力雄厚的硬件、软件工程师组成,提供基于飞思卡尔(freescale)、安霸(Ambarella)、瑞芯微、NXP等最新ARM平台的产品级解决方案。同时我们也为客户提供完全定制化服务
评论
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 188浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 153浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 469浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 56浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 118浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 103浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 464浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 57浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦