基于n型有机半导体实现高灵敏短波红外光探测

MEMS 2024-02-21 00:01

导语


短波红外(1000-2700 nm)光探测对于生物医学、三维视觉应用和光学通信等领域都具有重要意义。得益于有机半导体材料光学带隙可以连续调节以及其他诸多优势,基于其制备的有机光探测器(OPDs)近年来逐渐成为了领域内的研究热点。但是由于目前缺少具有低能量无序和低缺陷密度的超窄带隙有机半导体,因此对OPDs而言,如何在短波红外区域实现高响应度和探测率是一个巨大挑战。为了应对这一挑战,华南理工大学的段春晖教授提出引入醌式结构(Q),构筑了受体-给体-醌式-给体-受体(A-D-Q-D-A)型超窄带隙n-型有机半导体,BDP4Cl。通过引入醌式苯并二吡咯烷酮(BDP)单元来增加共轭骨架的醌式构型含量,可以有效地促进键长均一化和电子云离域,从而实现超过1200 nm的短波红外吸收。并且由于醌式单元的刚性骨架和多重非共价构象锁,BDP4Cl表现出了增强的平面性和结晶性,从而获得了低能量无序度和低缺陷密度。最终基于BDP4Cl的短波红外有机光探测器(SWIR OPD)在400-1200 nm范围内实现了灵敏的光探测,并且在1100 nm处(硅探测器的响应截止边),实现了18.9%的外量子效率和3.81 × 1012 Jones的探测率,成为目前性能最好的自供电型SWIR OPDs。相关成果“Sensitive short-wavelength infrared photodetection with a quinoidal ultralow band-gap n-type organic semiconductor”于2024年1月25日在线发表在Chem期刊上。论文通讯作者是段春晖教授,第一作者是博士研究生杨明群和尹冰艳


前沿科研成果


基于n型有机半导体实现高灵敏短波红外光探测


窄带隙有机半导体通常为D-A型结构,利用给体和受体单元之间的电子推拉效应来促进轨道杂化,实现带隙缩小。除此之外,也可以通过增加共轭骨架的醌式构型含量,促进键长均一化和电子云离域来实现带隙的缩小。基于此,作者设计了一种A-D-Q-D-A型n-型有机半导体,BDP4Cl,以期望实现超窄带隙(图1a)。同时以不含醌式结构的A-D-D-A型分子DC4Cl作为参比,研究醌式结构的引入对光电性质和器件性能的影响。


如图1b所示,BDP4Cl在溶液中便展示出了超过1000 nm的吸收截止边,在薄膜状态下的起始吸收边进一步红移至了1243 nm,对应的光学带隙为1.00 eV。而参比分子DC4Cl的溶液和薄膜吸收边分别位于850 nm和933 nm。并且BDP4Cl的最低未占据分子轨道(LUMO)能级与DC4Cl的相比下降了0.24 eV,这充分说明了引入醌式结构是实现超窄带隙n-型有机半导体的有效策略(图1c)。更重要的是,作者发现BDP4Cl在实现短波红外吸收的同时,吸收边仍十分陡峭,这说明是一种中性态吸收,并且能量无序度比较低。随后作者通过密度泛函理论(DFT)计算了BDP4Cl基态单线态和基态三线态之间的差值为–13.8 kcal/mol,证明了其在理论上是稳定的。作者又通过热失重分析,环境储藏以及将薄膜用三氯化铁的硝基甲烷溶液或肼的乙腈溶液处理来进一步证明了BDP4Cl确实处于稳定的中性态(图1d-1g)。


图1. BDP4Cl和DC4Cl的(a)化学结构及其分子设计理念,(b)吸收光谱,(c)能级,(d)热失重曲线和(e-f)储藏稳定性;(g)BDP4Cl的化学稳定性。(图片来源:Chem


为解释BDP4Cl超窄带隙的起源以及醌式单元BDP在其中发挥的作用,作者首先计算了BDP4Cl和DC4Cl中所共同含有的CPDT单元的键长交替值(BLA)。如图2a所示,BDP4Cl中CPDT单元拥有更小的BLA值,这说明了BDP4Cl共轭骨架中的碳碳单键和碳碳双键的键长更加趋于均一化,这有利于电子云离域。进一步,作者通过傅里叶变换拉曼光谱发现BDP4Cl在1300-1700 cm-1范围内具有波数更低的最强拉曼带,这直接证明了BDP4Cl中的π电子云更加离域(图2b)。最后,作者利用核独立化学位移(NICS)数据证明了BDP4Cl中所发生的键长均一化以及π电子离域均来自于BDP单元驱动的共轭骨架醌式构型含量的提高(图2c)。


图2. BDP4Cl和DC4Cl的(a)键长交替值,(b)傅里叶变换拉曼光谱和(c)核独立化学位移。(图片来源:Chem


为探究BDP4Cl和DC4Cl的光探测能力,作者选择p-型聚合物PCE10作为给体,制备了倒置结构的有机光探测器。如图3a所示,不额外施加反向偏压的情况下,PCE10:DC4Cl器件的EQE响应范围为300-1000 nm,而PCE10:BDP4Cl器件的外量子效率(EQE)响应扩展到300-1200 nm范围,这与其薄膜吸收光谱相一致。在1100 nm处,即硅探测器的响应截止边,PCE10:BDP4Cl器件实现了高达18.9%的EQE响应,对应的响应度为0.17 A/W。不仅如此,作者还发现两种器件在0 V偏压下均实现了10-10 A cm-2级别的暗电流密度(图3b),这使得两种器件都可以实现超过1013 Jones的闪烁噪声限制探测率(Dsh*)(图3c)。作者进一步测量了两个器件的噪声谱,也发现了两个器件表现出了相似的噪声电流(图3d)。得益于低至1.04 × 1014 A Hz-1/2 的噪声电流,PCE10:BDP4Cl器件在1100 nm处、10 Hz频率下实现了3.81 × 1012 Jones的比探测率(图3e),这使其成为目前性能最好的自供电型短波红外有机光探测器(图3f)。


图3. 基于PCE10:BDP4Cl和PCE10:DC4Cl的器件在0 V偏压下的(a)EQE曲线,(b)暗电流密度曲线,(c)Dsh*曲线,(d)噪声谱,(e)10 Hz的比探测率,和(f)自供电型短波红外光探测器性能对比。(图片来源:Chem


对于自供电型短波红外有机光探测器而言,其噪声电流主要来自于热生载流子,其浓度取决于活性层材料的有效带隙。而BDP4Cl明显缩小的光学带隙和下移的LUMO能级说明PCE10:BDP4Cl的有效带隙肯定小于PCE10:DC4Cl的有效带隙,理论上会导致更高的噪声电流。但这一理论推测却与实际情况相反。实际上,热生载流子浓度由给体-受体界面带边附近的间隙内态介导,即决定热激发载流子的热活化能Ea取决于给受体材料的带尾态。因此,作者首先利用变温暗电流确定了两个器件在0 V偏压下的热活化能Ea,发现两个器件拥有相似的热活化能,这与实际情况是相符合的(图4a)。进一步,作者通过傅里叶变换光电流-外量子效率(FTPS-EQE)测试了两个器件的能量无序度,发现PCE10:BDP4Cl器件具有比PCE10:DC4Cl器件明显更小的乌尔巴赫能(22.3 vs 38.6 meV),这有利于增大热生载流子势垒(图4b,4c)。除此之外,深能级缺陷也是影响噪声电流的重要因素。作者采用电容-电压法和电容-频率法测试了两个器件的缺陷密度,发现PCE10:BDP4Cl器件具有更小的缺陷密度(图4d,4e)和深能级缺陷态密度(图4f),这同样有助于其实现更低的噪声电流。基于上述结果,可以得出结论:PCE10:BDP4Cl器件具有更低的能量无序度和缺陷密度,从而使其可以克服有效带隙的限制,实现跟PCE10:DC4Cl器件相似的低噪声电流,最终获得高比探测率。


图4. 基于PCE10:BDP4Cl和PCE10:DC4Cl的器件的(a)热活化能,(b)乌尔巴赫能,(c)热势垒示意图,(d)电容-电压曲线,(e)Mott–Shockley曲线,和(f)缺陷态密度分布。(图片来源:Chem


除了对器件性能的表征和对器件物理的探究,作者还探索了PCE10:BDP4Cl短波红外光探测器的应用潜力,包括采用光电容积描记(PPG)法测量人体心率(图5a-b),采用加速光电容积脉搏波(APG)法分析详细的心跳过程(图5c),以及制备光谱仪原型器件 (图5d)。充分证明了BDP4Cl在短波红外光探测领域中的巨大应用潜力。


图5. PPG的(a)原理示意图和(b)心率监测;(c)APG分析;(d)光谱仪数据。(图片来源:Chem




课题组简介


本课题组隶属于华南理工大学材料科学与工程学院,是有机光电领域国内外知名的研究基地——发光材料与器件国家重点实验室的骨干组成部分。本课题组是一个学科高度交叉融合的研究团队,由化学、材料、半导体、光电技术等不同专业背景的成员组成,开展“有机合成→材料表征→器件集成”的全链条研究。我们的研究以π-共轭有机高分子光电功能材料的分子设计与合成为基础,结合材料物理性质的表征与分析,侧重开展有机太阳电池、近红外光探测器等新型光伏与光电子器件的基础研究与技术开发。



教授简介


段春晖,博士,华南理工大学教授,博士生导师,国家级青年人才计划入选者,广东省青年珠江学者。2013年在华南理工大学获得博士学位,2014年3月至2017年6月在荷兰埃因霍温理工大学开展博士后研究,2017年7月起任华南理工大学教授。主要从事有机高分子光电材料与器件的研究,在有机太阳电池与光探测器方面取得国际领先的系列创新研究成果。研制了当前世界上性能最好的有机短波红外光探测材料与器件;提出了多重共振效应有机光伏材料的学术思想;多次创造聚噻吩太阳电池的世界纪录效率;开发了硼氮稠环、氰基噻吩、线性D–A聚合物、聚噻吩等多个原创性有机光伏材料体系。至今在Chem. Soc. Rev.ChemJouleJ. Am. Chem. Soc.Angew. Chem. Int. Ed.Adv. Mater.Energy Environ. Sci.等国际顶级学术期刊发表SCI论文130余篇,论文获他人引用6800多次,H-因子44,入选ESI高被引论文19篇论文;共同主编中文专著1部,参与出版英文专著5部;获授权发明专利9。曾获首届教育部学术新人奖、第八届中国青少年科技创新奖,参与获得教育部高等学校科学研究优秀成果一等奖。目前担任中国感光学会光电材料与器件专业委员会副主任委员、国际期刊Energy Materials副主编,是Chinese Chemical Letters(中国化学快报)、Journal of Semiconductors(半导体学报)、Journal of Functional Polymers(功能高分子学报)、Chinese Journal of Lasers(中国激光)等多个学术期刊的青年编委。


延伸阅读:
《光谱成像市场和趋势-2022版》
《新兴图像传感器技术及市场-2024版》
《单光子雪崩二极管(SPAD)期刊文献检索与分析-2023版》
《单光子雪崩二极管(SPAD)专利态势分析-2023版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 178浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 99浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 136浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 229浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 226浏览
  • 2025年4月13日(中国武汉)——在全球经济分化与地缘政治不确定性加剧的背景下,科技与金融的深度融合已成为推动创新与繁荣的关键动力。为实现科技创新、产业进步和金融发展有机结合,发挥金融对科技创新和产业进步的支持作用,国际金融论坛(IFF)科技金融委员会启动大会暨首届科技金融圆桌会议于4月13日在湖北省武汉市武汉产业创新发展研究院成功举行。同时,IFF科技金融委员会由国际金融论坛IFF与武创院联合成立。本次大会汇聚了来自政府、产业与学术研究机构及金融等多领域的精英,共同探讨科技金融如何更好地服务
    华尔街科技眼 2025-04-15 20:53 56浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 117浏览
  • 一、引言:智能化趋势下的学爬玩具开发挑战随着早教理念的普及,学爬玩具作为婴幼儿早期运动能力开发的重要工具,市场需求持续增长。然而,传统学爬玩具开发面临多重挑战:需集成红外遥控、语音交互、电机控制等多模块,开发周期长、硬件成本高;复杂的红外编解码与语音功能实现依赖工程师深度参与,技术门槛陡增。如何以更低成本、更快速度打造差异化产品,成为行业亟待解决的痛点。二、传统开发模式痛点分析硬件冗余红外接收模块、语音芯片、主控MCU分立设计,导致PCB面积增加,BOM成本攀升。开发周期长需工程师独立完成红外协
    广州唯创电子 2025-04-16 08:40 63浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 90浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 66浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦