软包电池三电极测试性能方法!

电动车千人会 2024-02-19 18:30

点击上方蓝字关注我们吧





当电池在低温或大倍率充电时,可能存在锂离子到达负极后不能及时嵌入石墨层间而发生析锂的问题,即动力学受限导致的极化现象。因此,为了更好地研究电池的各种电化学性能,经常会引入参比电极,分别测试正极和负极相对参比电极的电位及其在不同测试工况下的电位变化。


利用三电极可对电池化成的成膜反应、循环充放电、倍率充放电、高低温充放电、电池析锂量化分析、正负极阻抗变化以及电池失效等方面进行全面、原位的分析。在电池预充化成过程中,通过引入参比电极可得到正负极各自相对于一个稳定的基准电极的电压变化,实现对电池内部电化学反应进行原位检测。


再者,如电池在进行倍率充放电时,中值电压会随着充放电倍率的增大而降低,而三电极体系的应用可以很好地分析正、负极各自的极化程度,有针对性地提出性能改善方法。本文采用锂片或镀锂后的铜丝作为参比电极,通过电化学测试研究电池内部各电极在充放电过程中的电化学行为。




实验部分





01

石墨负极材料选型:


三款石墨负极材料的理化特性如表1所示,因材料粒径、颗粒形貌及碳包覆处理对石墨材料动力学性能影响较大,故选择以上三种不同类型的石墨材料进行对比分析。



02

材料表征测试:


采用扫描电子显微镜(Zeiss EV018,德国产)对三款石墨负极材料形貌进行表征分析。


03

电池组装:


1)参比电极的处理

选择直径为40um的漆包铜丝,并经过如下处理步骤(图1)。



2)软包三电极电池的制作

正极选择磷酸铁锂LFP材料,负极匹配不同类型的石墨进行研究。正极片由LFP、聚偏氟乙烯PVDF、导电碳黑SP组成,负极片分别由如上石墨、导电碳黑SP、羧甲基纤维素钠CMC、丁苯橡胶 SBR组成,隔膜采用20μm PP基膜。电解液包含1 mol/L LiPF6、EC∶EMC∶DEC(质量比25∶40∶30)和VC2%。对负极片、隔膜及正极片进行Z字形叠片,制作软包装电池,设计N/P均为1.15,设计容量5Ah。在软包电池Z字型叠片方式的基础上,按照正极、隔膜、参比电极、隔膜、负极的顺序组装并引出所述参比电极的极耳,可从锂离子电池的顶端、两侧或底端引出 (如图2所示)。


3)参比电极镀锂

采用蓝电扣式电池充放电设备,取分容后的电池(50%SOC),采取如下方式对参比电极锂:(1)正向镀锂:电极连接方式为正极+参比电极,电流0.5mA,时间2h;(2)反向镀锂:电极连接方式为负极+参比电极,电流0.5mA,时间2h。


04

电性能测试:


1)倍率充电性能测试

应用动力电池测试设备对A、B、C三组软包电池进行倍率充电性能测试,充电倍率均为1.5C,温度25±2℃。测试工步如下:电池以0.3C恒流恒压充电至3.65V,以0.3C恒流放电至2.5V,循环3次;最后以1.5C倍率充电至3.65V,各步骤时间间隔30min。同时应用测试仪(HIOKI)监控负极(vs.参比电极)的电位变化。


2)电池阶梯充电测试

磷酸铁锂体系电池在低温或倍率充电时易出现析锂问题,因此在实际应用中可以采用分步阶梯充电方式,即电池在低SOC时采用较大电流充电,在高SOC时减小充电电流,以降低充电末期负极石墨的析锂风险,保证电池综合性能。实验针对析锂风险最大的A组电池进行分步阶梯充电研究,电流依次为1.2C、0.8C、0.3C,测试温度25±2℃。



结果与讨论





01

材料表征


图3为A、B、C三款不同石墨负极材料颗粒形貌SEM照片,A、B组均为单颗粒与二次颗粒混合材料,粒径13~14μm,C组为单颗粒小粒径石墨材料,粒径7μm。


02

电池倍率充电性能测试


如前言部分所述,引入参比电极,可监测充电时电池正负极的电位变化。图4为A、B、C三组软包电池倍率充电性能测试曲线,表2为电池充电末期负极电位对比数据。



对比 A、B、C三组电池充电曲线可以看出,C款石墨负极材料倍率充电性能更好,从石墨材料角度来讲,小粒径及碳包覆处理有利于提升石墨的动力学性能,降低负极析锂风险,测试结果与理论相一致。



研究表明,电池在充电过程中,若正极脱出的Li+没有及时嵌入到负极内部,多出的部分Li+就会在负极表面被还原,引入参比电极监控电池在充电过程中负极的真实电位,若负极最低电位达到达到0V或以下,即可判定存在析锂风险;同时负极0V对应电池的SOC越高,或者负极的最低电位越高,表明材料倍率性能越好。



03

电池充电制度研究


选择A组电池进行分步阶梯充电,曲线如图5所示,电池阶梯充电过程数据统计如表3所示。



由数据可以看出,采用不同电流(依次为1.2C、0.8C、0.3C)阶梯分步充电,整体充电时长为63min,与采用常规1C恒流恒压充电所需时间基本一致;充电末端负极电位为0.0727V,高于析锂电位(0V),降低了负极析锂风险,因此采用此充电方法可在不增加充电时长的同时又能保证充电效果及电池性能。







结论





本文制作了磷酸铁锂三电极软包电池,定性研究了电池充电过程析锂风险。应用不同石墨负极材料的软包电池,充电末端负极析锂风险不同,小粒径碳包覆石墨材料的动力学性能更好,充电析锂风险更低。对磷酸铁锂电池充电制度开展了相关研究结果表明,充电过程采用分步阶梯充电,依次为1.2C、0.8C、0.3C,即电流递减的方式,电池在充电末期负极电位为0.07270V,高于析锂电位0V,降低了充电末期负极析锂风险。综上,三电极方法对锂离子电池充电制度研究、负极石墨材料动力学性能评价及材料体系选型、锂离子电池失效分析具有一定指导意义。


文献参考:高娇阳, 袁东亚, 叶翠霞. 三电极方法在锂离子电池性能评价中的应用研究[J]. 电池工业, 2022, 26(3):4.



来源:电池技术TOP+



END



参会扫码报名



参会详情咨询

联系人:张晚晚

电话:13671990811




扫描二维码

关注电动车千人会

了解更多行业相关资讯




点击“阅读全文”,立即报名咨询!

【免责声明】文章为作者独立观点,不代表电动车千人会立场。如因作品内容、版权等存在问题,请于本文刊发30日内联系电动车千人会进行删除或洽谈版权使用事宜

电动车千人会 电动车千人会(EVH1000)是电动汽车智慧出行一站式咨询交流服务平台,旨在通过业内千位专家的努力带动下,融合产学研、证推新技术、优整供应链、创提智造力,为推动汽车行业的蓬勃发展奉献力量。电动车千人会通过组局电动车相关的产业评选、行业会议、闭门沙龙、技术培训、技术咨询、出海行业对接等,以加快产业集群化落地及人才综合能力提升。
评论
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 80浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 63浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 58浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 75浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 69浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 95浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 60浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 113浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 65浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 163浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 104浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 104浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦