Linux内核中的各种锁:信号量/互斥锁/读写锁/原子锁/自旋锁/内存屏障等

Linux阅码场 2024-02-19 08:57

首先得搞清楚,不同锁的作用对象不同。

下面分别是作用于临界区CPU内存cache的各种锁的归纳:

一、atomic原子变量/spinlock自旋锁 — —CPU

既然是锁CPU,那就都是针对多核处理器或多CPU处理器。单核的话,只有发生中断会使任务被抢占,那么可以进入临界区之前先关中断,但是对多核CPU光关中断就不够了,因为对当前CPU关了中断只能使得当前CPU不会运行其它要进入临界区的程序,但其它CPU还是可能执行进入临界区的程序。

原子变量:在x86多核环境下,多核竞争数据总线的时候,提供Lock指令锁住总线,保证“读-修改-写”操作在芯片级的原子性。这个好说,我们一般对某个被多线程会访问的变量设置为atomic类型的即可,比如atomic_int x;atomic x;

自旋锁:

当一个线程在获取锁的时候,如果锁已经被其它线程获取,那么该线程将循环等待,然后不断的判断锁是否能够被成功获取。使用实例如下:

#include
// 定义自旋锁
spinlock_t my_lock;

void my_function(void)
{
spin_lock(&my_lock);
// 访问共享资源的操作
spin_unlock(&my_lock);
}

互斥锁中,要是当前线程没拿到锁,就会出让CPU;而自旋锁中,要是当前线程没有拿到锁,当前线程在CPU上忙等待直到锁可用,这是为了保证响应速度更快。但是这种线程多了,那意味着多个CPU核都在忙等待,使得系统性能下降。

因此一定不能自旋太久,所以用户态编程里用自旋锁保护临界区的话,这个临界区一定要尽可能小,锁的粒度得尽可能小。

为什么自旋锁的响应速度会比互斥锁更快?

在小林coding中说到,自旋锁是通过 CPU 提供的 CAS 函数(Compare And Swap),在「用户态」完成加锁和解锁操作,不会主动产生线程上下文切换,所以相比互斥锁来说,会快一些,开销也小一些。

而互斥锁则不是,前面说互斥锁加锁失败,线程会出让CPU,这个过程其实是由内核来完成线程切换的,因此加锁失败时,1)首先从用户态切换至内核态,内核会把线程的状态从「运行」状态设置为「睡眠」状态,然后把 CPU 切换给其他线程运行;2)当互斥锁可用时,之前「睡眠」状态的线程会变为「就绪」状态(要进入就绪队列了),之后内核会在合适的时间,把 CPU 切换给该线程运行。

然后返回用户态。

这个过程中,不仅有用户态到内核态的切换开销,还有两次线程上下文切换的开销。

线程的上下文切换主要是线程栈、寄存器、线程局部变量等。

而自旋锁在当前线程获取锁失败时不会进行线程的切换,而是一直循环等待直到获取锁成功。因此,自旋锁不会切换至内核态,也没有线程切换开销。

所以如果这个锁被占有的时间很短,或者说各个线程对临界区是快进快出,那么用自旋锁是开销最小的!

自旋锁的缺点前面也说了,就是如果自旋久了或者自旋的线程数量多了,CPU的利用率就下降了,因为上面执行的每个线程都在忙等待— —占用了CPU但什么事都没做。

二、信号量/互斥锁 — —临界区

信号量:

信号量(信号灯)本质是一个计数器,是描述临界区中可用资源数目的计数器。

信号量为3,表示可用资源为3。加入初始信号量为3,某时刻信号量为1,说明可用资源数为1,那么有2个进程/线程在使用资源或者说有两个资源被消耗了(具体资源是什么得看具体情况)。进程对信号量有PV操作,P操作就是进入共享资源区前-1,V操作就是离开共享资源后+1(这个时候信号量就表明还可以允许多少个进程进入该临界区)。

信号量进行多线程通信编程的时候,往往初始化信号量为0,然后用两个函数做线程间同步:

sem_wait():等待信号量,如果信号量的值大于0,将信号量的值减1,立即返回。如果信号量的值为0,则线程阻塞。

sem_post():释放资源,信号量+1 ,相当于unlock,这样执行了sem_wait()的线程就不阻塞了。

要注意:信号量本身也是个共享资源,它的++操作(释放资源)和--操作(获取资源)也需要保护。其实就是用的自旋锁保护的。如果有中断的话,会把中断保存到eflags寄存器,待操作完成,就去该寄存器上读取,然后执行中断。

struct semaphore {
spinlock_t lock; // 自旋锁
unsigned int count;
struct list_head wait_list;
};

互斥锁:

信号量的话表示可用资源的数量,是允许多个进程/线程在临界区的。但是互斥锁不是,它的目的就是只让一个线程进入临界区,其余线程没拿到锁,就只能阻塞等待。线程互斥的进入临界区,这就是互斥锁名字由来。

另外提一下std::timed_mutex睡眠锁,它和互斥锁的区别是:

互斥锁中,没拿到锁的线程就一直阻塞等待,而睡眠锁则是设置一定的睡眠时间比如2s,线程睡眠2s,如果过了之后还没拿到锁,那就放弃拿锁(可以输出获取锁失败),如果拿到了,那就继续做事。比如 用成员函数try_lock_for()

std::timed_mutex g_mutex;
//先睡2s再去抢锁
if(g_mutex.try_lock_for(std::chrono::seconds(2)))){
// do something
}
else{
// 没抢到
std::cout<<"获取锁失败";
}

三、读写锁/抢占 — —临界区

读写锁:

用于读操作比写操作更频繁的场景,让读和写分开加锁,这样可以减小锁的粒度,提高程序的性能。

它允许多个线程同时读取共享资源,但只允许一个线程写入共享资源。这可以提高并发性能,因为读操作通常比写操作频繁得多。读写锁这种就属于高阶锁了,它的实现就可以用自旋锁。

抢占:

抢占必须涉及进程上下文的切换,而中断则是涉及中断上下文的切换。

内核从2.6开始就支持内核抢占,之前的内核不支持抢占,只要进程在占用CPU且时间片没用完,除非有中断,否则它就能一直占用CPU

抢占的情况:

比如某个优先级高的任务(进程),因为需要等待资源,就主动让出CPU(又或者因为中断被打断了),然后低优先级的任务先占用CPU,当资源到了,内核就让该优先级高的任务抢占那个正在CPU上跑的任务。也就是说,当前的优先级低的进程跑着跑着,时间片没用完,也没发生中断,但是自己被踢掉了。

为了支持内核抢占,内核引入了preempt_count字段,该计数初始值为0,每当使用锁时+1,释放锁时-1。当preempt_count为0时,表示内核可以安全的抢占,大于0时,则禁止内核抢占

Per-CPU— —作用于cache

per-cpu变量用于解决各个CPU里L2 cache和内存间的数据不一致性。

相关视频推荐

高并发场景下,三种锁方案:互斥锁,自旋锁,原子操作的优缺点

自旋锁、互斥锁、信号量、原子操作、条件变量在不同开源框架应用

从nginx、redis、skynet开源框架看锁的使用

需要C/C++ Linux服务器架构师学习资料加qun579733396获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

四、RCU机制/内存屏障 — —内存

RCU机制是read copy update,即读 复制 更新

和读写锁一样,RCU机制也是允许多个读者同时读,但更新数据的时候,需要先复制一份副本,在副本上完成修改,然后再一次性地替换旧数据。

比如链表里修改某个节点的数据,先拷贝该节点出来,修改里面的值,然后把节点前的指针指向拷贝出的节点。


等到旧数据没有人要读的时,就把该内存回收。

所以RCU机制的核心有两个:1)复制后更新;2)延迟回收内存

有RCU机制的话,读写就不需要做同步,也不会发生读写竞争了,因为读者是对原来的数据进行读,而写者是对拷贝出来的那份内存进行修改,读写可以并行。

他们的读写是根据内存的指针来进行的,写者写完之后,就把旧读者的指针赋值为新的数据的指针,指针的赋值操作是原子的,这样新的读者将访问新数据。

旧内存由一个线程专门负责回收。

内存屏障:

内存屏障则是用于控制内存访问顺序,确保指令的执行顺序符合预期。

因为代码往往不是看我们写的这种顺序被执行的,它有两个层面的乱序:

1)编译器层面的。因为编译器的优化往往会对代码的汇编指令进行重排。

2)CPU层面的。多 CPU 间存在内存乱序访问的情况。

内存屏障就是让编译器或CPU对内存的访问有序。

编译时的乱序访问:

int x, y, r;
void f()
{
x = r;
y = 1;
}

开了优化选项后编译,得到的汇编可能是y = 1先执行,再x =r执行。可以用g++ -O2 -S test.cpp生成汇编代码,查看开了-O2优化后的汇编。

我们可以使用内核提供的宏函数barrier()来避免编译器的这种乱序:

#define barrier() __asm__ __volatile__("" ::: "memory")
int x, y, r;
void f()
{
x = r;
__asm__ __volatile__("" ::: "memory");
y = 1;
}

或者将涉及到的相关变量x和y用volatile关键字修饰:

volatile int x, y;

注意,C++里的volatile关键字只能避免编译期的指令重排,对于多CPU的指令重排不起作用,所以实际上代码真正运行的时候,可能又是乱序的。而Java的volatile关键字好像具有编译器、CPU两个层面的内存屏障作用。

多CPU乱序访问内存:

在单 CPU 上,不考虑编译器优化导致乱序的前提下,多线程执行不存在内存乱序访问的问题。因为单个CPU获取指令是有序的(队列FIFO),返回指令执行的结果至寄存器也是有序的(也是通过队列)

但是在多CPU处理器中,因为每个 CPU 都存有 cache,当数据x第一次被一个 CPU 获取时,x显然不在 该CPU 的 cache 中(这就是 cache miss)。cache miss发生那意味着 CPU 需要从内存中获取数据,然后数据x将被加载到 CPU 的 cache 中,这样后续就能直接从 cache 上快速访问。

当某个 CPU 进行写操作时,它必须确保其他的 CPU 已经将数据x从它们的 cache 中移除(以便保证一致性),只有在移除操作完成后此 CPU 才能安全的修改数据。

显然,存在多个 cache 时,我们必须通过cache 的一致性协议来避免数据不一致的问题,而这个通讯的过程就可能导致乱序访问的出现。

CPU级别的内存屏障有三种:

  1. 通用 barrier,保证读写操作都有序的,mb() 和 smp_mb() // mb即memory barrier

  2. 写操作 barrier,仅保证写操作有序的,wmb() 和 smp_wmb()

  3. 读操作 barrier,仅保证读操作有序的,rmb() 和 smp_rmb()

上述这些函数也是有宏定义的比如mb(),用在上述的编译期间乱序的例子中就是加个mfence

#define mb() _asm__volatile("mfence":::"memory")
void f()
{
x = 1;
__asm__ __volatile__("mfence" ::: "memory");
r1 = y;
}
// GNU中的内存屏障#define mfence() _asm__volatile_("mfence": : :"memory")

注意,所有的 CPU级别的 Memory Barrier(除了数据依赖 barrier 之外)都隐含了编译器 barrier。

而且,实际上很多线程同步机制,都在底层有内存屏障作为支撑,比如原子锁和自旋锁都是依赖CPU提供的CAS操作实现。CAS即Compare and Swap,它的基本思想是:

在多线程环境下,如果需要修改共享变量的值,先读取该变量的值,然后修改该变量的值,最后将新值与旧值进行比较,如果相同,则修改成功,否则修改失败,需要重新执行该操作。

在实现CAS操作时,需要使用内存屏障来保证操作的顺序和一致性。例如,在Java中,使用Atomic类的compareAndSet方法实现CAS操作时,会自动插入内存屏障来保证操作的正确性。

对于应用层的编程而言,C++11引入了内存模型,它确保了多线程程序中的同步和一致性。内存屏障(CPU级别)就是内存模型的一部分,用于确保特定的内存操作顺序,X86-64下仅支持一种指令重排:Store-Load ,即读操作可能会重排到写操作前面。

内存屏障有两种类型:store和load,使用示例如下:

// store屏障
std::atomic x;
x.store(1, std::memory_order_release); // store屏障确保之前的写操作在之后的写操作之前完成

// load屏障
std::atomic y;
int val = y.load(std::memory_order_acquire); // load屏障确保之前的读操作在之后的读操作之前完成

CPU级别的内存屏障除了保证指令顺序外,还要保证数据的可见性,不可见就会导致数据的不一致性。

所以上述代码中也用到了acquire和release语义分别对读和写设置屏障:

acquire:保证acquire后的读写操作不会发生在acquire动作之前

release:保证release前的读写操作不会发生在release动作之后

除了上面的atomic的load和store,C++11还提供了单独的内存屏障函数std::atomic_thread_fence,其用法和上述的类似:

#include
std::atomic_thread_fence(std::memory_order_acquire);
std::atomic_thread_fence(std::memory_order_release);

五、内核中使用这些锁的示例

进程调度:内核锁用于保护调度器的数据结构,以避免多个CPU同时修改它们而导致错误。

// 自旋锁
spin_lock(&rq->lock);
...
spin_unlock(&rq->lock);

文件系统:内核锁用于保护文件系统的元数据,如inode、dentry等数据结构,以避免多个进程同时访问它们而导致错误。

spin_lock(&inode->i_lock);
...
spin_unlock(&inode->i_lock);

网络协议栈:内核锁用于保护网络协议栈的数据结构,如套接字、路由表等,以避免多个进程同时访问它们而导致错误。

read_lock(&rt_hash_lock);
...
read_unlock(&rt_hash_lock);

内存管理:内核锁用于保护内存管理的数据结构,如页表、内存映射等,以避免多个进程同时访问它们而导致错误

spin_lock(&mm->page_table_lock);
...
spin_unlock(&mm->page_table_lock);


Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论 (0)
  • 在影像软的发展历程中,美图曾凭借着美图秀秀等一系列产品,在“颜值经济”的赛道上占据了领先地位,成为了人们日常生活中不可或缺的一部分,也曾在资本市场上风光无限,2016 年上市时,市值一度超过46亿美元,备受瞩目。 然而,随着市场的不断发展和竞争的日益激烈,美图逐渐陷入了困境。商业模式单一,过度依赖在线广告收入,使得其在市场波动面前显得脆弱不堪;多元化尝试,涉足手机、电商、短视频、医美等多个领域,但大多以失败告终,不仅未能带来新的增长点,反而消耗了大量的资源。更为严峻的是,用户流失问题日
    用户1742991715177 2025-04-05 22:24 65浏览
  •   安全生产预警系统作为现代工业与安全管理的重要组成部分,正以前所未有的技术引领力,创新性地塑造着未来的安全管理模式。这一系统通过集成多种先进技术,如物联网、大数据、人工智能、云计算等,实现了对生产环境中潜在危险因素的实时监测、智能分析与及时预警,为企业的安全生产提供了坚实的技术保障。   技术引领:   物联网技术:物联网技术使得各类安全监测设备能够互联互通,形成一张覆盖全生产区域的安全感知网络。传感器、摄像头等终端设备实时采集温度、压力、气体浓度、人员位置等关键数据,为预警系统提供丰富的
    北京华盛恒辉软件开发 2025-04-05 22:18 76浏览
  • 引言:POPO声的成因与影响在语音芯片应用中,WT588F08A作为一款支持DAC+功放输出的高集成方案,常因电路设计或信号处理不当,在音频播放结束后出现POPO声(瞬态噪声)。这种噪声不仅影响用户体验,还可能暴露电路设计缺陷。本文将基于实际案例,解析POPO声的成因并提供系统化的解决方案。一、POPO声的根源分析1. 功放电路状态切换的瞬态冲击当DAC输出的音频信号突然停止时,功放芯片的输入端若处于高阻态或无信号状态,其内部放大电路会因电源电压突变产生瞬态电流,通过喇叭表现为POPO声。关键因
    广州唯创电子 2025-04-07 09:01 91浏览
  • 【拆解】+沈月同款CCD相机SONY DSC-P8拆解 这个清明假期,闲来无事,给大伙带来一个老古董物品的拆解--索尼SONY DSC-P8 CCD相机。这个产品是老婆好几年前在海鲜市场淘来的,由于显示屏老化,无法正常显示界面了,只有显示背光。但是这也无法阻止爱人的拍照。一顿盲操作依旧可以拍出CCD古董相机的质感。如下实拍: 由于这个相机目前都在吃灰。我就拿过来拆解,看看里面都是怎样个设计,满足下电子爱好者的探索。 首先给大伙展示下这台老相机的全貌。正视图  后视图 
    zhusx123 2025-04-06 17:38 86浏览
  • 医疗影像设备(如CT、MRI、超声诊断仪等)对PCB的精度、可靠性和信号完整性要求极高。这类设备需要处理微伏级信号、高频数据传输,同时需通过严格的EMC/EMI测试。制造此类PCB需从材料选择、层叠设计、工艺控制等多维度优化。以下是关键技术与经验分享。 1. 材料选择:高频与生物兼容性优先医疗影像设备PCB常采用 Rogers RO4000系列 或 Isola FR4高速材料,以降低介电损耗并保证信号稳定性。例如,捷多邦在客户案例中曾为某超声探头厂商推荐 Rogers RO4350B
    捷多邦 2025-04-07 10:22 76浏览
  • 引言:小型化趋势下的语音芯片需求随着消费电子、物联网及便携式设备的快速发展,产品设计对芯片的小型化、高集成度和低功耗提出了更高要求。厂家凭借其创新的QFN封装技术,推出WTV系列(如WTV380)及WT2003H系列语音芯片,以超小体积、高性能和成本优势,为紧凑型设备提供理想解决方案。产品核心亮点1. QFN封装技术赋能超小体积极致尺寸:WTV380采用QFN32封装,尺寸仅4×4毫米,WT2003H系列同样基于QFN工艺,可满足智能穿戴、微型传感器等对空间严苛的场景需求。高密度集成:QFN封装
    广州唯创电子 2025-04-07 08:47 68浏览
  • 在科技浪潮奔涌的当下,云计算领域的竞争可谓是如火如荼。百度智能云作为其中的重要参与者,近年来成绩斐然。2024年,百度智能云在第四季度营收同比增长26%,这样的增速在行业内十分惹眼。回顾全年,智能云业务的强劲增长势头也十分明显,2024年第一季度,其收入达到47亿元,同比增长12%;第二季度营收51亿元,同比增长14%。从数据来看,百度智能云在营收方面一路高歌猛进,展现出强大的发展潜力。然而,市场对百度智能云的表现似乎并不完全买账。2024年,尽管百度智能云数据亮眼,但百度股价却在震荡中下行。在
    用户1742991715177 2025-04-06 20:25 63浏览
  • 在追求环境质量升级与产业效能突破的当下,温湿度控制正成为横跨多个行业领域的核心命题。作为环境参数中的关键指标,温湿度的精准调控不仅承载着人们对舒适人居环境的期待,更深度关联着工业生产、科研实验及仓储物流等场景的运营效率与安全标准。从应用场景上看,智能家居领域要求温湿度系统实现与人体节律的协同调节,半导体洁净车间要求控制温湿度范围及其波动以保障良品率,而现代化仓储物流体系则依赖温湿度的实时监测预防各种产品的腐损与锈化。温湿度传感器作为实现温湿度监测的关键元器件,其重要性正在各行各业中凸显而出。温湿
    华普微HOPERF 2025-04-07 10:05 77浏览
  • 【拆解】+南孚测电器拆解 之前在天猫上买了一盒南孚电池,他给我送了一个小东西—测电器。今天我们就来拆解一下这个小东西,看看它是怎么设计和工作的。 三颗指示灯显示电池剩余电量。当点亮3颗LED时,则表示点亮充足。当点亮2颗LED时,则表示还能用。当点亮1颗LED时,表示点亮地建议更换,当无法点亮LED时,则表示没电了。外壳上还印有正负极,以免用户将电池放反。 这个小东西拆解也很方便,一个螺丝刀稍微撬几下。外壳就下来了,它是通过卡扣连接。 开盖后,测电线路板清晰呈现在眼前。 让我们看看小小的线路板有
    zhusx123 2025-04-05 15:41 53浏览
  • 及时生产 JIT(Just In Time)的起源JIT 起源于 20 世纪 70 年代爆发的全球石油危机和由此引发的自然资源短缺,这对仰赖进口原物料发展经济的日本冲击最大。当时日本的生产企业为了增强竞争力、提高产品利润,在原物料成本难以降低的情况下,只能从生产和流通过程中寻找利润源,降低库存、库存和运输等方面的生产性费用。根据这种思想,日本丰田汽车公司创立的一种具有特色的现代化生产方式,即 JIT,并由此取得了意想不到的成果。由于它不断地用于汽车生产,随后被越来越多的许多行业和企业所采用,为日
    优思学院 2025-04-07 11:56 88浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦