如何应对“刺耳”的“啸叫”声

硬件笔记本 2024-02-13 12:36

点击上方名片关注了解更多


在笔记本电脑、平板电脑、智能手机、电视机以及车载电子设备等运行时,有时会听到"叽"的噪音。该现象称为"啸叫",导致该现象出现的原因可能在于电容器、电感器等无源元件。电容器与电感器的发生啸叫的原理不同,尤其是电感器的啸叫,其原因多种多样,十分复杂。本文中将就DC-DC转换器等电源电路的主要元件——功率电感器的啸叫原因以及有效对策进行介绍。


功率电感器啸叫原因

间歇工作、频率可变模式、负荷变动等可能导致人耳可听频率振动

声波是在空气中传播的弹性波,人的听觉可听到大约20~20kHz频率范围的"声音"。在DC-DC转换器的功率电感器中,当流过人耳可听范围频率的交流电流以及脉冲波时,电感器主体会发生振动,该现象称为"线圈噪音",有时也会被听成啸叫现象(图1)。


1:功率电感器啸叫机制

随着电子设备的功能不断强化,DC-DC转换器的功率电感器也成为了噪音发生源之一。DC-DC转换器通过开关器件进行ON/OFF,由此产生脉冲状电流。通过控制ON的时间长度(脉宽),可得到电压恒定的稳定直流电流。该方式称为PWM(脉冲调幅),其作为DC-DC转换器的主流方式获得广泛使用。

但DC-DC转换器的开关频率较高,达到数100kHz~数MHz,由于该频率振动超出了人耳可听范围,因此不会感受到噪音。那么,为什么DC-DC转换器的功率电感器会发出"叽"的啸叫呢?

可能的原因有几个,首先可能的是以节省电池电力等为目的,让DC-DC转换器进行间歇工作的情况,或将DC-DC转换器从PWM方式切换为PFM(脉冲调频)方式,在频率可变模式下运行的情况。图2所示为PWM方式与PFM方式的基本原理。


2:PWM(脉冲调幅)方式与PFM(脉冲调频)方式

PWM调光等DC-DC转换器间歇工作导致的啸叫

出于节能等目的,移动设备液晶显示器背光自动调光功能等引进了DC-DC转换器间歇工作。这是根据使用环境照度,对背光亮度进行自动调光,从而延长电池使用时间的系统。
该调光有多种方式,其中,控制LED亮灯时间及熄灯时间长度的方式称为PWM调光。PWM方式调光系统的优点在于,调光引起的色度变化较少,其主要用于笔记本电脑以及平板电脑等的背光中。

PWM调光通过200Hz左右的较低频率使DC-DC转换器进行间歇工作,并通过反复进行亮灯/熄灭操作来调整亮度。在亮灯/熄灭的恒定循环中,调长亮灯时间时将会变亮,调短时则会变暗。在200Hz左右的间歇工作中,眼睛基本上不会察觉背光频闪情况。但由于其处于人耳可听频率中,因此当基板上贴装的功率电感器中流过间歇工作的电流时,电感器主体将会因频率影响而发生振动,从而导致出现啸叫。


注释:占空比

DC-DC转换器中,相对于开关周期(开关器件的ON时间+OFF时间)的ON时间比称为占空比。对LED进行PWM调光时,亮灯时间/(亮灯时间+熄灯时间)称为占空比,并表示亮度。


频率可变模式DC-DC转换器导致的啸叫

PWM方式DC-DC转换器的特点在于,在普通工作中,其效率可高达大约80~90%以上。但待机时间等轻负荷情况下,效率将会严重降低。开关造成的损耗与频率成正比。为此,在轻负荷情况下会发生恒定开关损耗,因此会使效率降低。

因此,为了改善该问题,在轻负荷情况下使用自动将PWM方式替换为PFM(脉冲调频)方式的DC-DC转换器。PFM方式是配合负荷减轻,在固定ON时间的情况下,对开关频率进行控制的方式。由于ON时间恒定,因此通过延长OFF时间,开关频率将会渐渐降低。由于开关损耗与频率成正比,因此通过降低频率可在轻负荷情况下实现高效化。但降低后的频率将会进入人耳可听的约20~20kHz的范围,此时功率电感器将会发生啸叫。


负荷导致的啸叫

出于节省电池电力的目的,笔记本电脑等移动设备中运用有各类省电技术,为此可能会导致电感器发生啸叫。例如,出于兼顾低耗电量以及处理能力的目的,笔记本电脑CPU中带有周期性变更消耗电流的模式,当该周期处于人耳可听频率范围时,功率电感器可能会因该影响而产生啸叫。


注释:DC-DC转换器中功率电感器的作用

电感器可使直流电流顺利流过,而对于交流电流等发生变化的电流,则通过自感应作用,朝阻止发生变化的方向产生电动势,发挥电阻的作用。此时,电感器将电能转换为磁能,将其积攒起来,并在转换成电能后将其放出。该能量的大小与电感器电感值成正比。


功率电感器也被称为功率线圈、功率扼流圈,是用于DC-DC转换器等开关方式电源电路中的主要元件,通过与电容器进行协调,使开关器件ON/OFF所产生的高频脉冲更为平滑化。


由于电源电路的功率电感器中会流过大电流,因此绕组型为主流产品。这是因为,通过将高导磁率的磁性体(铁氧体或软磁性金属)用于磁芯中,以较少巻数实现高电感值,从而可使产品更为小型化。图3所示为使用功率电感器的DC-DC转换器(非绝缘型及斩波方式)基本电路。


3:DC-DC转换器(非绝缘型及斩波方式)基本电路


功率电感器主体振动以及噪音扩大的机制

当流过人耳可听范围频率的电流时,功率电感器主体发生的振动会引起啸叫。其振动原因以及噪音原因有以下几种可能。


振动原因

1. 磁性体磁芯磁致伸缩(磁应变)作用

2. 磁性体磁芯磁化导致相互吸引

3. 漏磁通导致绕组振动


噪音放大原因

1. 与其他元件接触

2. 漏磁通导致对周边磁性体产生作用

3. 与包括基板在内的组件整体固有振动数一致

导致产生功率电感器啸叫的振动原因以及噪音扩大原因如图4进行了总结。以下对这些原因的主要内容进行说明。


4:导致产生功率电感器啸叫的振动原因以及扩大原因


产生振动的各种原因与作用

振动原因:磁性体磁芯磁致伸缩(磁应变)

对磁性体施加磁场使其磁化后,其外形会发生细微变化。该现象称为"磁致伸缩"或"磁应变"。以铁氧体等磁性体为磁芯的电感器中,绕组所产生的交流磁场会使磁性体磁芯发生伸缩,有时会检测到其振动声。


5:磁性体磁致伸缩(磁应变)作用


磁性体是称为磁畴的小范围的集合体(图5)。磁畴内部的原子磁矩朝向相同,因此磁畴是一个自发磁化朝向恒定的微小磁铁,但磁性体整体却不会表现出磁铁的特性。这是因为,构成磁性体的多个磁畴,其排列使自发磁化相互抵消,因此从表面上来看处于消磁状态。


从外部对处于该消磁状态的磁性体施加磁场时,各个磁畴会将自发磁化朝向统一为外部磁场方向,因此磁畴范围会逐渐发生变化。该现象由磁畴间边界——磁壁的移动所引起。由此,随着磁化的进行,处于优势的磁畴逐渐扩大其范围,最终成为单一磁畴,并朝向外部磁场方向(饱和磁化状态)。该磁化过程中,在原子水平下会发生微小的位置变化,而在宏观水平下,则会表现为磁致伸缩,即磁性体的外形变化。


磁致伸缩导致的外形变化极其微小,约为原尺寸的1万分之1~100万分之1,但如图5所示,在磁性体上绕有线圈的状态下流过电流,当施加所产生的交流磁场时,磁性体将会反复伸缩,并产生振动。为此,在功率电感器中,无法完全消除磁致伸缩所导致的磁性体磁芯振动。功率电感器单体振动水平虽小,但当贴装至基板上时,若其振动与基板的固有振动数一致,则振动将会被放大,从而会听到啸叫。


振动原因:磁性体磁芯磁化导致相互吸引

6:鼓芯与屏蔽磁芯相互吸引导致啸叫


磁性体被外部磁场磁化时将会表现出磁铁性质,从而与周围磁性体相互吸引。图6所示为全屏蔽型功率电感器示例。此为闭合磁路结构的功率电感器,但鼓芯与屏蔽磁芯(环形磁芯)间设有间隙,噪音有时会从该处发出。绕组中流过交流电流时,因产生的磁场而被磁化的鼓芯与屏蔽磁芯将会因磁力而相互吸引,若该振动在人耳可听频率范围内时,则会听到噪音。


鼓芯与屏蔽磁芯之间的间隙通过粘接剂进行封闭,但为了防止因应力产生开裂,因此不会使用较硬的材料,从而无法完全抑制因相互吸引所导致的振动。


振动原因:漏磁通导致绕组振动

不带有屏蔽磁芯的无屏蔽型功率电感器中,不会因前述鼓芯与屏蔽磁芯磁化导致的相互吸引而产生啸叫。但在无屏蔽型产品中会发生其他问题。由于无屏蔽型产品为开放磁路结构,因此漏磁通会对绕粗产生作用。由于绕组中会流过电流,因此根据佛来明左手定则,力会作用于绕组上。为此,当交流电流流过绕组时,绕组本身会发生振动,从而产生啸叫(图7)。


7:磁通导致绕组振动


噪音放大的各种原因

噪音放大原因 与其他元件接触


在高密度贴装有多个电子元件及设备的电源电路基板中,若电感器与其他元件接触,则电感器的微小振动将会被放大,从而会听到啸叫。


噪音放大原因 漏磁通导致对周边磁性体产生作用

当电感器附近存在屏蔽罩等磁性体时,磁性体会因电感器漏磁通影响产生振动,从发生啸叫。


噪音放大原因 与包括基板在内的组件整体固有振动数一致

通常情况下,用于电感器等产品中的小型磁性体磁芯单体,其磁致伸缩导致的空气振动基本不会被识别为啸叫。但电感器由多个部件组合而成,且贴装于基板上时,将会产生多个人耳可听频率的固有振动数,该振动放大后便会形成啸叫。同时,若与组件整体的多个固有振动数相一致时,在安装至组件中之后有可能会发生啸叫。


图8所示为,通过运用了FEM(有限元法)的计算机模拟器对贴装有功率电感器的基板振动情况进行分析的示例。所使用的分析模型中,功率电感器配置于基板(FR4)中央,并对基板长边2面进行了固定。


一般情况下,结构体发生共振的固有值(固有振动数)拥有多个,与此相应,会有各种各样的振动模式。在该"功率电感器+基板"的分析模型中,随着频率的提高,各固有振动数也会出现各种各样的振动模式。图8所示的1次、2次、5次、18次振动模式中,功率电感器可能是振动源。其中,1次模式的振动频率与功率电感器单体的振动频率基本相同。但值得注意的是,Z方向(高度方向)振动较为显著的2次模式在功率电感器单体的情况下出现了较高的频率,但固定于基板上后出现了极低的频率。 


功率电感器的啸叫对策

以下就DC-DC转换器的功率电感器啸叫对策重点进行了总结。

重点1:避免流过人耳可听频率电流

避免流过人耳可听频率电流是最为基本的对策。但以节能等为目的的间歇工作以及频率可变模式的DC-DC转换器等无法避免人耳可听频率的通电时,请尝试以下静音化对策。


重点2:周围不放置磁性体

不在电感器附近放置可能受漏磁通影响的磁性体(屏蔽罩等)。不得已需要接近时,则应使用漏磁通较少的屏蔽型(闭合磁路结构)的电感器,同时还应注意放置方向。


重点3:错开固有振动数

有时通过错开固有振动数或提高振动数可降低啸叫。例如,通过变更电感器形状、种类、布局、基板紧固等条件,包含基板的组件整体固有振动数将会发生变化。此外,啸叫常见于7mm尺寸以上的大型功率电感器中。通过采用5mm以下的小型功率电感器,固有振动数将会提高,从而可降低啸叫。


重点4:置换为金属一体成型型

如上所述,在全屏蔽型功率电感器中,鼓芯与屏蔽磁芯会因磁性相互吸引,从而在间隙部位会发生啸叫。同时,在无屏蔽型功率电感器中,漏磁通引起的电线振动会导致产生啸叫。


针对此类功率电感器啸叫问题,置换为金属一体成型型是有效的解决方案。这是通过在软磁性金属磁粉中嵌入空心线圈后进行一体成型的功率电感器。由于没有间隙,因此磁芯之间不会相互吸引,同时,由于固定线圈时使其与磁性体形成一体化,因此还可避免因磁通造成绕组振动的问题。不仅如此,TDK的产品还采用了磁致伸缩较小的金属磁性材料,因此可抑制因磁致伸缩导致的振动,通过置换无屏蔽型或全屏蔽型产品可有望降低啸叫。


图8:各类功率电感器的噪音评估示例



TDK的金属一体成型型功率电感器可有效应对啸叫,同时,漏磁通极少,因此还适合放置在信号线附近等位置。

同时,使用了铁氧体磁芯的TDK功率电感器的特点在于,电感的种类更多,可应对较高的电感值。其量产性优异,多用于各类设备中。

硬件工程师及从业者都在关注我们

       
       

声明:


声明:文章来源信号完整性。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。
投稿/招聘/推广/宣传 请加微信:woniu26a

推荐阅读

  • 电路设计-电路分析

  • EMC相关文章

  • 电子元器件

后台回复“加群,管理员拉你加入同行技术交流群。

硬件笔记本 一点一滴,厚积薄发。
评论
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 84浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 106浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 122浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 108浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦