中国科学院大连化物所陈萍&郭建平研究团队:氢化锂介导光化学合成氨

果壳硬科技 2024-02-01 17:04

欢迎星标 果壳硬科技


氨是合成氮肥以及几乎所有重要含氮化学品的氮源。因此氮气还原为氨是维持地球上生命延续、满足人类对能源与化工需求的关键化学反应。Haber-Bosch合成氨过程被认为是20世纪最伟大的发明之一。然而虽历经了一个多世纪的发展,人工合成氨仍然需要在高温高压的苛刻反应条件(> 400℃,> 100 bar)下进行。鉴于全球日益严峻的能源和环境问题,发展可再生能源驱动的、温和条件下实施的新型固氮及合成氨新技术,是研究人员长期以来不懈追求的目标,也是化学科学中极具挑战性的研究课题。


近日,中国科学院大连化学物理研究所陈萍、郭建平研究团队在“氢化物化学固氮”研究方面取得新进展,揭示了氢化锂(LiH)光致脱氢变色现象与固氮之间的关联,并由此构筑了LiH介导的光催化合成氨过程。陈萍团队自2009年起致力于氢化物固氮化学研究,先后发展了过渡金属-氢化物催化合成氨(Nature Chemistry, 2017, 9, 64),氢化物介导化学链合成氨(Nature Energy, 2018, 3, 1067),以及配位氢化物催化合成氨(Nature Catalysis, 2021, 4, 959);在研究过程中我们注意到许多金属氢化物属于半导体,具有一定的吸光能力,而光和氢化物之间相互作用可能有助于介导某些小分子(如H2和N2)的化学转化,这是本论文的研究出发点。


氢化锂的光解


LiH的带隙大约为3.68 eV,可以吸收波长在350 nm以下的紫外光(UV)。实验发现,短暂的UV光照即可使LiH样品发生明显的变色现象,同时伴随着氢气的释放(图1a)。固体漫反射紫外-可见光谱表征结果显示LiH在UV照射下出现了一个以650 nm为中心的吸光带(图1b)以及尖锐而对称的顺磁共振波谱(EPR)信号(图1c)。这说明LiH在光照脱氢后,其表面可能生成了氢空位结构(F心)。我们进一步计算了具有两个氢空位的LiH(100)晶面的态密度(Density of states, DOS,图1d),发现电子更倾向于分布在氢空位中形成表面F心(图1e中黄色负电荷分布区域),从而在导带和价带之间形成了主要由Li的2p轨道组成的缺陷态。这一缺陷态的产生解释了LiH样品光致变色并可以吸收可见光(400-800 nm)的实验现象。


图1 LiH的光解。a. LiH样品在氩气中进行光脱氢实验时质谱检测的氢信号,插图为LiH 光照前后的照片;b. 不同光照时间后LiH样品的紫外-可见光谱;c. 光照前后的LiH样品的EPR谱图;d. 含有两个氢空位的LiH (100) 晶面的DOS;e. 含有两个氢空位的LiH (100) 晶面的表面电子分布 (黄色-负电荷,天蓝色-正电荷); 绿色和粉色小球分别代表Li和H。


LiH的光解与常见氧化物和氮化物半导体在光照下的表现存在本质差异。传统光催化剂光照产生的载流子容易发生复合而影响光催化效率。而LiH在光照过程中空穴可以氧化负氢并放氢形成氢空位,产生的光生电子则能储存在氢空位中,形成F心从而使表面呈现富电子的状态,这对后续化学转化过程具有重要作用。


光驱动氢化锂可逆加脱氢过程


LiH光解变色后持续通入氢气流,我们发现LiH样品逐渐褪色,并最终恢复到初始状态(图2a)。加氢20 min后的LiH样品的EPR信号强度明显减弱(图2b),这说明LiH的后续加氢可在常温常压下发生。我们后续进行了三个连续的光致脱氢及暗加氢循环,发现这一现象是可重复的。根据以上实验结果,LiH表面在常温常压下可实现光驱动可逆加脱氢过程。而LiH的热脱氢需要加热至900 K以上才能克服热力学的约束。这一结果显示光照为LiH介导的可逆储氢过程提供了一个解决方案。


图2 光驱动LiH加脱氢过程。a. 紫外光照变色后的LiH样品在室温氢气流中的颜色变化;b. UV照射及加氢前后的LiH样品的EPR;c. LiH样品进行光照实验时质谱检测的氢信号。插入照片显示了LiH颜色的变化。黑色箭头表示无光照区域。


氢化锂介导光驱动固氮及合成氨


LiH的光解能产生氢空位和局域化的“活泼”电子,这为N2的还原提供有利的环境。我们在光照条件下引入了N2气(图3a),发现LiH在N2气流中释放的氢量更多。此外,在N2中光照后的样品的红外光谱中产生了N-H伸缩振动信号(3185,3240和3293 cm-1,图3b),这说明LiH样品在光照下具有固氮能力。


在密闭体系中对LiH光照固氮反应进行定量(图3c),发现其固氮速率可达518 μmol g-1 h-1,而光照时间进一步增加,固氮量基本保持不变,说明反应0.5 h后,LiH样品表面活性位点可能已被N物种完全占据。我们使用14N2和同位素15N2作为原料气,利用核磁共振氢谱(1H-NMR,图3d)发现产氨几乎完全为14NH4+和15NH4+,这证明了LiH的固氮来源于原料氮气。我们也初步探索了LiH光催化合成氨的过程,使用H2含量较低的N2/H2混合气作为原料气在光照下持续通入反应器中,如图3e所示,LiH样品催化合成氨速率为75 μmol gcat-1 h-1,在16 h内均保持稳定,说明LiH可实现光催化合成氨过程。


图3 LiH介导光驱动固氮及合成氨。a. LiH样品在N2或Ar气氛进行光照实验时质谱检测的氢信号;b. UV照射前后的LiH样品的FT-IR;c. 在N2气氛中光照不同时间后的LiH样品的固氮量及固氮速率;d. 使用14N2或同位素15N2作为原料气时,吸收尾气的稀硫酸溶液的1H-NMR谱图;e. LiH光催化合成氨活性测试。


综上,LiH对光的响应是光生载流子有效参与后续化学转化的关键。这一工作发现简单的二元氢化物LiH可以在光照下发生变色并脱氢,形成表面局部富电子的F心而有利于氮气的活化与转化,进而实现了LiH介导的光催化合成氨过程。除LiH外,许多碱金属氢化物和碱土金属氢化物亦是半导体,如BaH2、CaH2等,而混合阴离子氢化物如氧氢化物(oxyhydride)和氮氢化物(nitride-hydride)等材料的能带及电子结构则更加丰富。这项工作推开了氢化物光化学合成氨研究的大门,展现了氢化物在介导光化学反应中的发展潜力,我们期待氢化物在光化学合成氨中发挥更加重要的作用。


研究团队

(共同)通讯作者郭建平:中国科学院大连化学物理研究所研究员


(共同)通讯作者 陈萍:中国科学院大连化学物理研究所研究员


(共同)第一作者 关业勤:博士,大连化物所DNL1901组


(共同)第一作者 文红:博士,大连化物所DNL1901组


中国科学院大连化学物理研究所陈萍课题组长期致力于氢化物在储氢、催化、负氢离子传导等领域的基础与应用研究。相关工作已在Nature (2002, 2023)、Nature Materials (2008)、Nature Chemistry (2017,2024)、Nature Energy (2018)、Nature Catalysis (2021)、Nature Reviews Materials (2016)、Nature Reviews Methods Primers(2021)等学术期刊上发表。


课题组网站

http://www.imide.dicp.ac.cn/index.htm

论文信息

发布期刊 《自然-化学》(Nature Chemistry

发布时间 2024年1月16日

文章标题 Light-driven ammonia synthesis under mild conditions using lithium hydride

(https://doi.org/10.1038/s41557-023-01395-8)


如果你是投资人、创业团队成员或科研工作者,对果壳硬科技组织的闭门会或其它科创服务活动感兴趣,欢迎扫描下方二维码,或在微信公众号后台回复“企业微信”添加我们的活动服务助手,我们将通过该渠道组织活动——


果壳硬科技 果壳旗下硬科技服务品牌,致力于连接科学家与投资人、创业者,在新一轮技术革命和资本流动中,做最懂硬核科技的团队。
评论
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 64浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 118浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 74浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 159浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 63浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦