从基础描述无刷直流电机的工作原理

strongerHuang 2020-10-04 00:00
关注、星标公众,不错过精彩内容

作者:涅哀

编辑整理:strongerHuang


来源地址:
https://www.zhihu.com/question/318357171/answer/721020603


无刷电机相信大家没听说过,生活或工作中都用过或接触过,今天分享一篇从基础开始描述无刷电机的文章。


0.电动机转动的原理

先说电动机的基本原理吧。有基础的可以直接跳过。

大家小时候都玩过磁铁吧,异极相吸,两磁铁一靠近“啪”就撞上了。



现在假设你的手速足够快,拿着一块磁铁在前面疯狂勾引,那么另外一块磁铁就一直跟着你。


你的手拿着磁铁画圈圈,另外一块磁铁也跟着你转圈圈。



以上,就是电动机转动的基本原理了。只不过是在前面用来勾引的“磁铁”不是真的磁铁,而是由线圈通电后生成的磁场。


1. 无刷直流电机简介

无刷直流电机,英语缩写为BLDC(Brushless Direct Current Motor)。电机的定子(不动的部分)是线圈,或者叫绕组。转子(转动的部分)是永磁体,就是磁铁 。根据转子的位置,利用单片机来控制每个线圈的通电,使线圈产生的磁场变化,从而不断在前面勾引转子让转子转动,这就是无刷直流电机的转动原理。下面深入一下。


2. 无刷直流电机的基本工作原理

2.1. 无刷直流电机的结构

首先先从最基本的线圈说起。如下图。可以将线圈理解成长得像弹簧一样的东西。根据初中学过的右手螺旋法则可知,当电流从该线圈的上到下流过的时候,线圈上面的极性为N,下面的极性为S。



现在再弄一根这样的线圈。然后摆弄一下位置。这样如果电流通过的话,就能像有两个电磁铁一样。



再弄一根,就可以构成电机的三相绕组。



再加上永磁体做成的转子,就是一个无刷直流电动机了。



2.2. 无刷直流电机的电流换向电路

无刷直流电机之所以既只用直流电,又不用电刷,是因为外部有个电路来专门控制它各线圈的通电。这个电流换向电路最主要的部件是FET(场效应晶体管,Field-Effect Transitor)。可以把FET看作是开关。下图将FET标为AT(A相Top),AB(A相Bottom),BT,BB,CT,CB。FET的“开合”是由单片机控制的。



2.3. 无刷直流电机的电流换向过程

FET的“开合”时机是由单片机控制的。最常用的电流换向方法是 Six-step Commutation,翻译过来是“六步换向”。现在建个坐标系。六步换向的过程如下表。



2.4. 无刷直流电机的转子是怎么转动的呢?

靠的就是用六步换向生成一个旋转的磁场,在转子的前方不断勾引。就像文章开头那只拿着磁铁画圈圈的手一样。如果你看合成的磁场方向和转子所在的位置的话,就一目了然了。



你看,合成的磁场的S极一直在转子N极的前面等着。

只要把握好线圈通电的时机,让合成磁场的方向一直提前于转子的位置,转子就会一直屁颠屁颠地跟着。


3. 怎样确定换向时机?

上面说过,控制转子转动的关键是,等转子转到合适的角度时,对通过线圈的电流进行换向,从而使生成的磁场方向发生变化,吸引转子,令转子转动。

那这个电流换向的时机应该怎么把握呢?也就是说,我要怎么样知道现在转子转动到什么位置?知道转子在哪我才知道要通哪两相的电啊。

其实判断转子位置的方法挺多,用传感器也行,不用传感器也行。先说用传感器的,传感器一般用霍尔传感器(Hall Sensor)。


3.1. 用传感器确认转子位置

3.1.1. 霍尔传感器

霍尔传感器通过霍尔效应(Hall Effect),能检测出磁场强度的变化。根据高中物理所学的左手定则(用来判断带电导体在磁场中的受力方向),在霍尔传感器所在的回路中,磁场使带电粒子的运动发生偏转,带电粒子“撞到”霍尔传感器的两边,产生电位差。这时就可以用电压计接到霍尔传感器的两边,检测出这种电压变化,从而检测出磁场强度的变化。原理如下图所示。



3.1.2. 霍尔传感器怎样得到转子的位置?

有了霍尔传感器,就能大致知道转子的位置了。霍尔传感器一般是每隔120°安装,或者每隔60°安装。下面假设是每隔120°安装的。


假设转子N极划过霍尔传感器的感应区域时,霍尔传感器的输出电压为高(一般5V)。反之为低。



根据HA,HB,HC的电平,可以知道转子所处位置的角度。比如,若HA高,HB低,HC低,我们能够知道转子处于180度~240度的电气角度之间(电气角度和实际机械角度的关系等下说)。使用3个霍尔传感器时,分辨率是60度的电气角度。就是说我只能知道现在转子的位置在60°电气角度范围内,但准确具体多少度我们不知道。


3.1.3. 电气角度和机械角度关系

虽然在这里插入这么个小知识有点怪,但我还是觉得有必要的,因为我觉得当时学的时候不太好理解。在这里配合霍尔传感器的实例说可能好懂一点。


机械角度就是电动机转子实际转过的角度。

电气角度和机械角度的关系与转子的极对数有关。

因为实际上线圈生成的磁场要吸引的是转子的磁极。所以对于电机的转动控制来说,我们只关心电气角度就好。



电气角度 = 极对数 x 机械角度


3.2. 无传感器时估计转子位置的方法

这个坑有点大,这个答案就先略过了。


4. 无刷直流电机的转速和旋转方向

4.1. 怎样控制无刷直流电机转动的方向?

改变电流换向的次序即可。让线圈合成的磁场方向反方向旋转起来。


4.2. 怎样控制无刷直流电机的转速?

线圈两端的电压越大,通过线圈的电流越大,生成磁场越强,转子转动得就越快。


因为接的电源是直流的,所以我们通常用PWM(Pulse Width Modulation,脉冲宽度调制)来控制线圈两端电压的大小。PWM的简单原理如下。



所以给无刷直流电机通电的时候,用单片机产生的PWM不断地控制FET的开合,能使线圈反复处于通电断电,通电断电的状态。通电时间长(Duty大),线圈两端的等效电压就大,产生的磁场强度就强,转子转动就快;通电时间短(Duty小),线圈两端的等效电压就小,产生的磁场强度就弱,转子转动就慢。


PWM波形接到FET的Gate(门极)上,控制FET的开合。假设Gate上的电压为高时,FET闭合导通;Gate上的电压为低时,FET断开不通电。


而且同一相上的上下两个FET须由反相的PWM波形控制,以防止上下两个FET同时导通,造成电流不通过电机而上下相同,造成短路。控制FET的PWM波形如下。



尾记

综上,无刷直流电机的关键有三点:

  1. 线圈绕组电流的换向顺序。电流的换向顺序决定了由线圈产生的磁场的旋转方向,从而决定了转子的转动方向。


  2. 霍尔传感器或其它手段来估计永磁体转子所处的位置,用于决定电流什么时候换向。


  3. 使用单片机产生的PWM波形来控制电机绕组的通电时间,来控制转子转动的速度。


推荐阅读:
可重入与不可重入函数的区别
Unicode UTF-8 UTF-16 UTF-32的关系
GitHub官方上线代码扫描工具,免费查找bug和漏洞

关注 微信公众号『strongerHuang』,后台回复“1024”查看更多内容,回复“加群”按规则加入技术交流群。


长按前往图中包含的公众号关注

strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 75浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 63浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 161浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 62浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦