综述|清华大学何向明&宁德时代吴凯EEM:补锂技术提升电池寿命

锂电联盟会长 2024-01-27 12:39
点击左上角“锂电联盟会长”,即可关注!

第一作者: 刘晓梅

通讯作者: 何向明/盛丽/吴凯

通讯单位: 清华大学&宁德时代


【背景】  

近年来,全球电力储能发展迅速,锂离子电池储能技术进步尤为显著。相比其他新型储能形式,锂离子电池储能的经济性优势明显,且未来技术提升空间巨大,因此,中国、美国、欧盟等均将其作为重点发展的新兴产业。截止2020年底,全球锂离子电池储能系统累计装机~13.1GW,占新型储能装机总量(非抽水蓄能型)的90%,近五年复合增长率为107%。围绕双碳目标,根据相关机构测算,到2030年为应对15-18亿千瓦的新能源接入,我国需配置1.5亿千瓦新型储能(不含抽水蓄能),用于实现电力系统的电力、电量平衡、运行安全及新能源高效利用。届时,大规模储能技术将成为新型电力系统灵活调节和辅助支撑的主力,这不仅要求储能电站具备电网主动支撑、规模化调峰、调频和调压等应用功能,同时还要求储能电站与新能源场站同寿(20-30年),从而实现最佳经济效益。基于上述需求,这也同步要求作为储能电站核心的锂离子电池具备长寿命、高安全、高能效和低成本的性能。


现阶段,储能用锂离子电池通常以石墨作负极,液态有机电解液作电解质,正极选材方面,国外以三元锂电池(NCM)为技术路线,主要研究机构包括韩国LG、三星和日本松下;国内以磷酸铁锂(LFP)电池技术路线为主,主要研究机构包括宁德时代、比亚迪、国轩高科等公司。虽然三元电池具备更高的能量密度,在电芯容量相同情况下储能电站占地面积更少,降低安装、调试成本,但阴极活性材料的过渡金属溶出、颗粒破碎等问题恶化电芯循环寿命,无法满足储能电站20-30年的长服役寿命需求。区别于NCM的层状结构,LFP晶体结构为有序橄榄石型,PO43-聚阴离子的P-O强共价键可以起到良好的结构支撑作用,显著降低循环过程中Li+频繁嵌入、脱出对LFP结构影响,大幅提升电芯循环寿命。本团队针对不同健康状态(SOH)的商业化LFP电池容量衰减机理进行了系统研究,结果表明,LFP电池寿命衰减的主要因素为阳极副反应导致的活性锂消耗,具体表现为固体电解质膜(SEI)持续增厚及膨胀力增长。因此,通过阳极/阴极预锂化,提升循环过程中活性锂总量不仅有助于提升电池能量密度,还可显著延长电芯使用寿命,从而满足新能源储能场站20-30年的长周期服役寿命需求。


图1统计了近5年预锂化技术发文量及被引量,可以看出,随着锂离子电池在新能源汽车/电化学储能领域的飞速发展应用,常规化学体系愈发无法满足不断提升的能量密度/循环寿命等需求的背景下,预锂化技术作为上述需求的高效解决方案,发文量/被引量逐年上升。本文从实际应用出发,对现有预锂化技术(负极化学预锂化、负极电化学预锂化、负极物理接触预锂化及正极添加剂预锂化)的可制造性(耐候及规模化程度)、补锂量可调控性及能量密度影响三个维度进行系统综述,为后续研究的实际应用落地提供参考。

图1. 2016至2021年Web of Science预锂化相关论文发文量/被引量年度分布

         

1. 负极化学预锂化

化学预锂化从形式上可以分为机械合金化法和溶液预锂化法两种,前者主要在惰性气体保护下,将熔融锂金属与活性材料球磨/搅拌反应,从而在活性材料层级实现预锂化;后者利用预锂化溶液与活性材料间电势差,既可以在活性材料层级,也可以在极片层级自发实现预嵌锂。


早在2006年何向明课题组等将硬碳与Li2.6Co0.4N在惰性气氛下高能球磨,合成了预锂化的硬碳复合材料(Hard carbon/Li2.6Co0.4N),在随后的半电池测试中首次库仑效率从66.3%提升到100%。Zhao等通过机械冶金法(图2),合成了一系列IV族元素(Z=Si、Ge、Sn等)及其对应氧化物的预锂化材料(Li22Z5-Li2O),预锂化弥补了SEI成膜过程活性锂消耗,使得合成材料的克容量接近理论克容量。此外,得益于Li和Ge之间的宽禁带宽度,LixGe表现出了最佳环境存放稳定性,即使暴露于空气中6h后依旧可保有~75%可逆容量。相比纯LixZ材料,Li2O钝化层中的O原子可强化LiXZ中Li原子的稳定性,减缓LiXZ的副反应速率,进一步提升LixZ-Li2O的环境稳定性。因此,当采用机械冶金法合成ZO2预锂化材料时,高温下生成的致密Li2O钝化层均匀分布在LiXZ纳米域周围,从而在空气中暴露6h后依旧保有~85%的可逆容量。在合成工艺方面,Yom等研究了升温速率对冶金法预锂化SiO活性材料的影响,XRD及DTA测试表明,在高温/高升温速率下生成的反应产物与恒流化成阶段的SEI组分相当。Li2SiO3相的生成只与合成温度相关(≥350℃),与升温速率无关;Li4SiO4相的生成不仅与温度相关(≥450℃),还与升温速率相关(≥14℃/min)。Li等采用高能球磨合成了一系列热力学稳定的LixSi化合物(x=4.4、3.75、2.33),结果表明预锂化后材料循环稳定性、克容量发挥均显著提升。此外,表面氮掺杂也有助于提升LixSi循环稳定性,单圈容量衰减由1.06%降低至0.15%,但由于形成了无电化学活性的LixNySiz相,初始容量发挥由2610 mAh/g降低至713 mAh/g。

图2. 机械冶金法合成IV族元素预锂化材料示意图

         

不同于机械冶金法仅可在材料层级实现预锂化,溶液法还可实现极片层级预锂化,工业化难度相对较小。早在上世纪90年代初期,Takei等就发表了锂萘化合物预锂化炭黑类负极材料的相关成果,但由于溶剂体系的差异,预锂化形成的SEI膜对于负极的钝化效果差于电化学成膜。Scott等采用正丁基锂对炭黑进行预锂化,但由于正丁基锂还原电势较高(~1V vs. Li/Li+),因此仅可在炭黑表面形成SEI膜,减少化成过程中活性锂消耗,无法进一步提升补锂量。Shen等以锂萘/乙二醇二甲醚(DME)体系为预锂化溶液,分别对硫-聚丙烯腈(S-PAN)阴极/Si负极/硬碳进行部分预锂化,以此组装的Li2S-PAN/LixSi全电池能量密度高达710 Wh/Kg,100 mA/g电流密度下循环250圈后容量保持率~90.6%。不同于炭黑/Si/硬碳等负极材料,钛酸锂(LTO)嵌锂电势~1.5V,远高于锂萘/正丁基锂溶液,因此通过溶剂及预锂化时间调控,可以实现高化学计量比预锂化。但现有商业化锂离子电池多以石墨为负极,嵌锂平台~0.1V vs. Li/Li+,仅通过负极调控难以实际落地应用。针对该问题,Jang等在锂萘体系基础上进一步发展,通过引入支链调节萘、联苯等芳烃的π键最低未占据分子轨道(LUMO)能量,以此实现锂/芳烃体系还原电势调控。结果表明,2-甲基联苯(2-BP)可将还原电势降至<0.13V vs. Li/Li+,仅需浸泡预锂化30min,SiOx负极首效即可提升至~118%。

         

2. 负极电化学预锂化

电化学预锂化在形式上与实验室常用的半电池结构类似(图3a),以待补锂活性材料作阴极,锂金属作阳极,通过控制充放电截止电压或直接外短路在极片层级实现补锂量的精准调控。补锂完成后,拆解得到预锂化极片,与常规正极重新组装成全电池。Kim等通过控制外短路电阻及时间调节C-SiOx负极预锂化程度,为兼顾效率,在100Ω最优短路电阻下短路30min,可逆容量由1157.4 mAh/g提升至1369.3 mAh/g。参考此方法,Guo等对PbS负极进行预锂化(Pb/Li2S),半电池测试结果表明,首次嵌锂时1.3V处SEI成膜峰消失,库伦效率由40%提升至>97%,进一步与Li(NiCoMn)1/3O2组装成全电池后首次库伦效率依旧可达82%。洪等以电化学法对硅碳负极进行预锂化,与硫/介孔碳组装的全电池能量密度高达590 Wh/kg。当补锂量由20%提升至50%时,100圈循环后克容量仍有650mAh/g-。尽管电化学预锂化可以实现定量补锂,且通过电解液策略调控保持初始SEI组分与常规电化学成膜相当,但也存在极片拆解/再组装操作复杂、预锂化极片对环境敏感、电解液消耗量大等问题,因此该方法更适于实验室阶段的小批量研究使用,产业化难度大。

图3. 电化学预锂化示意图

         

3. 负极物理接触预锂化

物理接触预锂化形式上与电化学预锂化相似,二者主要差异在于是否通过电解液形成离子通路。接触预锂化主要利用锂金属与活性材料间电势差,以内短路形式实现活性材料的自发嵌锂,也是目前已产业化的主要补锂形式。


2007年何向明课题组等在惰性气氛下将硬碳电极与薄的金属锂箔紧压在一起,制得了硬碳预锂化复合电极,在与LiCoO2正极组装的全电池中,首次库仑效率从52%提升至86%。Yao等以直接物理接触对氧化石墨烯/Si复合负极进行预锂化,5min接触即可将首次库伦效率由77.7%提升至97.1%。但由于锂离子电池极片通常为多孔结构,表面粗糙度大,因此外短路法存在嵌锂过程电流密度分布不均等问题。Xu等通过延压使锂金属发生类牛顿流体粘性蠕变,从而增加锂金属与极片间接触面积,提升预锂化均匀性。Meng等通过在锂金属与极片间增加一层缓冲层控制嵌锂速率(图4),实现SiOx均匀补锂。改缓冲层由聚乙醇缩丁醛(PVB)涂覆于碳纳米管薄膜表面形成,可通过控制涂覆次数调节缓冲层阻抗,从而实现补锂速率调控。与NCM622组装成全电池,0.1C下首次库伦效率~87%,克容量发挥由补锂前的134 mAh/g提升至173 mAh/g,循环200圈后容量保持率~77%。

图4. a)接触预锂化及b)缓冲层控制接触预锂化示意图

         

采用锂粉替代锂片也可实现均匀嵌锂,然而,不论是锂片还是锂粉,均有极高的反应活性及环境敏感度,易引发安全风险,在实际产业化生产过程中除压缩补锂工序至装配工序时间外,如何实现锂金属的钝化保护也意义重大。Cao等采用聚甲基丙烯酸甲酯(PMMA)钝化锂金属,电池装配注液后,PMMA溶解于电解液中,锂金属恢复活性后自发嵌入阳极。在30%相对湿度下,无PMMA保护锂金属2min内即因副反应发黑变色,而PMMA保护的锂金属2h后才发生明显变化。惰性锂粉也可实现上述功能,其制备方法通常采用高温熔融分散+液滴乳化技术,该工艺存在锂粉粒径分布大(20-50μm)、操作温度高(>200℃)等问题。鉴于此,Pu等以高熔点离子液体四丁基膦双(三氟甲烷磺酰)亚胺盐为保护介质,低温球磨制备得到了纳米化(<500nm)惰性锂粉,在Si、SiO、SnO2负极中均表现出了良好的补锂效果。

         

4. 正极添加剂预锂化

尽管基于锂金属的阳极补锂工艺已取得了长足发展,但锂金属的安全性问题不容忽视。锂作为低电势、高反应活性碱金属,遇水剧烈反应,易引发锂离子电池与环境、溶剂和粘结剂的兼容性问题,从而极大提升制造成本。与此相对,采用添加剂进行正极预锂化要简单许多,只需在阴极匀浆过程中加入少量预锂化添加剂,即可在首次化成中实现活性锂补充。基于应用机理,添加剂预锂化大致可分为正极材料富锂化和高锂含量添加剂两类,前者利用过渡金属的多价态、多空穴特性,将非化学计量比的Li+存储于未占晶格,首次化成阶段补充SEI成膜消耗;后者利用添加剂分解实现活性锂补充,一般需满足分解电压不超出电池上限电压、放电过程不再二次嵌锂及与电解液、活性材料、辅材无副反应等条件。

         

表1. 正极预锂化材料

如表1所示,常见锂离子电池富锂正极包含锰酸盐及磷酸盐系列两大类。Li1+xMn2O4最早被用作富锂化合物提升锂离子电池首效,Aravindan等利用LiMn2O4的氧八面体位点进行预锂化(~2.8V vs. Li/Li+),从而提升与α-Fe2O3负极组装的全电池首次库伦效率及循环稳定性。Gabrielli等在LiNi0.5Mn1.5O4正极中掺入部分富锂化的Li1+xNi0.5Mn1.5O4构成混合阴极,弥补全电池中Si负极的高成膜消耗。当Li1+xNi0.5Mn1.5O4中的富锂相(<3.0V vs. Li/Li+)被消耗后,又可重新转变为具有稳定电化学活性的尖晶石相LiNi0.5Mn1.5O4,从而在不恶化电芯能量密度前提下提升全电池首效。尽管锰酸盐类富锂材料表现出了良好的电化学特性,采用LiI、LiOH·H2O及金属锂的合成方法也已在实验室层级广泛应用,但针对高Li含量材料的合成不可避免都会产生无反应活性的第二晶相。Betz等最近报道了一种基于锂金属及1-戊醇的Li1+xNi0.5Mn1.5O4富锂正极合成方法,采用该方法,商业化的LiNi0.5Mn1.5O4仅需经一步反应即可合成嵌锂程度可控的富锂材料,且该材料可于室温环境中稳定存放至少24h。Song等采用Li5V2(PO4)3为正极解决硬碳首效过低的问题,首次充电过程中Li5V2(PO4)3重新转化为常规化学计量比的Li3V2(PO4)3。以此组装的软包电池首效提升至96.7%,能量密度可达320 Wh/Kg,即使-40℃时依旧有~80%容量保持率。此外,利用羟磷相LiVPO4F中V3+/2+在~1.7V(vs. Li/Li+)处的还原电对也可实现~100 mAh/g活性锂补充,后续利用V3+/4+氧化还原电对在3-4.5V范围内实现稳定循环。


尽管正极材料富锂化可改善全电池首效,但现有商业化锂离子动力电池正极材料主要为NCM及LFP,尤其在超长寿命储能电池领域,多以LFP路线为主,而上述材料无大规模量产经验,短期内难以批量应用。若仅与LFP混掺使用,则存在补锂容量低、能量密度收益小等问题。与此相反,虽然富锂添加剂无法直接作为正极材料稳定循环,但在首次脱锂过程中可释放较高的补锂容量,当与现有成熟体系混掺使用时,可显著提升电芯能量密度。LixY(Y=O,N,S)类材料被认为是最具商业化潜力的富锂添加剂,补锂容量普遍>1000 mAh/g。Park等的研究发现,Li3N的可逆容量与粒径密切相关,球磨前Li3N无电化学活性,球磨后可发挥~1400 mAh/g可逆容量,分解电位~0.9V vs. Li/Li+。当LiCoO2中掺入2% L3N与SiOx/C@Si组装成全电池后,0.2C放电倍率下可逆容量提升~11%。但由于Li3N电子电导较差,导致放电极化增加,随电流密度增加,可逆容量迅速降低。当只将Li3N混掺与LiCoO2极片表层时,可缓解Li3N低电导率问题,即使10C放电,容量保持率也仅轻微降低。Li3N除了低电导率,还存在对水分敏感、与极性溶剂(NMP)不兼容等问题。Sun等通过在Li3N表面形成Li2O及Li2CO3钝化层的方式提升其稳定性,从而使其可与THF等低极化溶剂兼容。Liu等利用N,N-二甲基甲酰胺的高脱氢能,替代NMP用作溶剂,从而稳定Li3N浆料。与Li3N相比,Li2O及Li2O2与现有体系不存在兼容性问题,但其分解电压>4.7 V vs. Li/Li+,面临较高的电解液分解风险。此外,分解产生的O2易溶于电解液形成超氧根离子,影响电芯后续循环。Liu等研究发现,通过与过渡金属纳米复合(M/Li2O,M=Fe, Co, Ni, Mn等),可将Li2O分解电压降至<4.0V的同时还可保有较高补锂容量(图5)。当LFP中混掺4.8% Co/Li2O后,可逆容量提升~11%,且表现出了更优异的循环稳定性。除上述两大类材料外,Li6CoO4、LixCyOz、Li5FeO4等材料也均表现出了较高的补锂容量。

图5. 不同M/Li2O纳米复合物补锂容量[52]

         

【展望】

随着近些年的研究深入及制造水平提升,商业化锂离子动力电池的设计体系已愈发成熟,在此背景下,很难仅通过电极材料和电解质调控实现电池性能的大幅迁跃。预锂化技术的出现为解决当前锂离子电池循环寿命/能量密度瓶颈提供了一种有效手段。图6基于加工耐候性、连续化生产能力、补锂量可调控性及能量密度四个维度总结了各补锂策略的落地应用可行性,同时对各策略后续重点研究方向进行了评述。

图6. 各预锂化策略产业化可行性对比

         

化学预锂化中的机械合金法对应的球磨/高温熔融均为高能过程,虽有惰性气体保护,但批量合成安全性难保证,且锂金属反应活性强,设备要求高;溶液预锂化可实现极片层级补锂,基于浸润时间实现补锂量的半定量调控,但现有预锂化溶液还原电势高,仅能在石墨负极表面形成SEI,无法预嵌锂,补锂效率相对较低,同时还需要用到醚/联苯/萘等高毒性物质作溶剂,引入安全风险。总体而言,机械合金法基本不具备产业化条件,近年来的相关研究也逐年减少;溶液法可否产业化的关键在于后续是否可开发出更低还原电势的溶剂体系(<0.1V vs. Li/Li+),再配合产线湿度管控,实现石墨负极预锂化。


电化学预锂化通过控制截止电压/电流可实现补锂量的精准调控,同时通过电解液添加剂优化,实现SEI组分调控,保证其与电化学成膜组分相当。但该方法电解液需求量大,成本高昂,同时预锂化后极片二次组装工艺复杂,环境要求高,因此该预锂化方法仅适合实验室层级研究使用,产业化前景较低。


物理接触预锂化作为目前主流的预锂化策略之一,具有SEI组分与化成成膜类似、相对易于规模化生产等优点,仅需控制产线湿度(<2 ppm)即可在极片层级实现补锂。但该方法工艺流程复杂,兼顾补锂量一致性后的生产效率较低,在不影响锂效率/电芯性能前提下如何实现金属锂的钝化保护具有重要意义。


正极预锂化环境要求低,直接使用常规匀浆工艺即可实现活性锂补充,是目前最具应用前景的预锂化技术。富锂正极材料可以在不牺牲电芯能量密度/倍率性能的前提下实现活性锂补充,但综合考虑安全、成本及寿命优势,现有储能电池、尤其是超长寿命储能电池以LFP路线为主,锰系、磷酸钒锂系材料短期内均难以大规模应用。后续磷酸锰铁锂(LMFP)若能解决电导率低、高温稳定性差等问题,作为LFP下一代产品大规模导入量产应用,再结合锰系材料的富锂化策略,才有可能在锂离子动力电池领域实现产业化应用。相对而言,富锂添加剂是现阶段最值得探索的技术,仅需通过少量添加剂混掺,即可实现5-15%活性锂补充。对于该类材料,应用痛点在于脱锂后生成的非电化学活性相不仅会恶化电芯能量密度,还会恶化电芯倍率性能,从而影响整车功率输出。此外,富锂材料的分解往往伴随大量气体产生(O2、N2、CO2等),恶化电芯界面,严重时甚至造成电解液断桥诱发析锂。针对这两个问题,后续研究若能提供行之有效的改善措施(碳包覆、低分解低残留锂化物、气体自由基捕获剂等),则具有重大意义。

     

Xiaomei Liu, Ze Wu, Leqiong Xie, Li Sheng, Jianhong Liu, Li Wang, Kai Wu, Xiangming He, Prelithiation Enhances Cycling Life of Lithium-Ion Batteries: A Mini Review, Energy Environ. Mater., 2022.

https://doi.org/10.1002/eem2.12501


锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱ibatteryalliance@163.com。

相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 423浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 38浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 111浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 183浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 195浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 49浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 390浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 100浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦