随着越来越多的设备需要接入以太网,流程、工厂和楼宇自动化应用中的单对以太网10BASE-T1L用例(包括以太网APL)不断扩展,互联设备增加,更高级别的管理系统可以使用更丰富的数据集,从而使生产效率得以显著提高,同时降低了运营成本和能耗。以太网至现场或边缘的愿景是将所有传感器和执行器连接到一个融合IT/OT网络。
实现这一愿景存在系统工程方面的挑战,因为其中一些传感器受功率和空间的限制。适用于传感器和执行器应用、具备强大内部存储功能的低功耗、超低功耗微控制器市场需求日益增长。但大多数这样的处理器都有同样的问题,那就是没有集成的以太网MAC,不支持MII、RMII或 RGMII媒体独立(以太网)接口。传统的PHY无法与这些处理器相连。
图1. 10BASE-T1L MAC-PHY可以通过高级包过滤明显降低设备的功耗和复杂度。
MAC-PHY中的MAC还支持IEEE 1588;因此,流程自动化需要802.1AS时钟同步。MAC-PHY支持同步计数器、接收消息的时间戳和发送消息的时间戳捕获。这大幅降低了软件设计的复杂度,因为除了MAC-PHY本身之外,不需要额外的硬件就能实现时间同步。MAC可生成定时到同步计数器的输出波形,因此,可用于同步外部应用级操作。SPI接口支 Open Alliance 10BASE-T1x MAC-PHY串行接口。Open Alliance SPI是一种新型高效SPI协议,专为MAC-PHY而设计。
对于现场或边缘设备需要高性能处理器(可能已集成MAC)的高性能应用来说,10BASE-T1L PHY结合MII、RMII和RGMII接口支持快速开发10BASE-T1L PHY。通过重新利用现有MAC接口驱动程序来添加以太网连接性便可实现(见图2)。
图2. 实现10BASE-T1L连接的MAC-PHY与PHY优势对比
现场设备连接既需要10BASE-T1L PHY,又需要10BASE-T1L MAC-PHY,以便实现以太网与各种现场设备的连接。包括流量计在内的较高功率现场设备采用集成MAC和10BASE-T1L PHY的高性能处理器。较低功耗现场设备,包括内置未集成MAC的超低功耗处理器的温度传感器,采用10BASE-T1L MAC-PHY,通过SPI接口与处理器相连,从而实现以太网连接(见图3)。
图3. 用于流程自动化的采用10BASE-T1L MAC-PHY和10BASE-T1L PHY的干线和支线网络拓扑
表1. ADIN1100 PHY与ADIN1110 MAC-PHY对比
👇点击探索ADI“芯”世界