金融大模型的四大瓶颈和三层落地框架

零壹财经 2024-01-26 08:21

作者 |祝世虎
 
本文作者为光大兴陇信托有限责任公司信息技术部副总经理、数据中心总经理
 
智能风控的发展陷入了瓶颈,主要体现在数据、模型、成本、对抗等四个瓶颈。

当前,大模型在金融业加速落地,为智能风控建设进一步发展与自我革命提供了有力方法与手段,如何更好地推进大模型在金融业,特别是智能风控领域落地,需要金融行业不断地探索与实践。
 
1 大模型在金融业的落地
 
人工智能在1956年达特茅斯会议上被首次提出后,历经了三个阶段:一是"专家系统+机器学习"阶段;二是"数据驱动+深度学习"阶段;三是大模型的通用人工智能阶段。

进入通用人工智能阶段标志着人工智能开始由"小数据、单任务"分析范式向"大数据、多任务"生成范式转变,此时人工智能具备了更强的通用能力、生成能力和人机交互能力。

从大模型的算法来看,《自然》杂志将大模型定义为网络参数规模达到亿级以上的"预训练深度学习算法"。在大模型的工程实践中,由于人类的知识存在于书本、图画等语言中,所以目前大模型的训练素材主要以语言为主,其主要是指大语言模型(Large Language Model,LLM)。

基于语言的预训练算法决定了大模型的智能类型是一种感知智能(基于Bayes公式),不同于决策智能(基于先验概率),更不是计算智能(基于计算公式),智能类型就是大模型的应用边界。

从生产力角度看,人类社会先后经历了农业革命、工业革命、电气革命、信息革命等重大变革,目前正在经历自动化和智能化革命,其主要的生产力就是人工智能,而大模型就是典型的"由电力到智力"的革命,将有效提升社会的平均智能。

从应用角度看,大模型天然具备人机交互能力、语言与代码的生成能力,目前其在金融领域的应用主要体现在三个方面:一是基于人机交互能力的外部智能客服、内部智能服务;二是基于生成能力的智能办公、低代码生成;三是基于效率效能提升的智能机器人、一岗多专的智能员工。

但这些均不是金融领域的核心应用场景,而基于金融的特性,监管科技、合规管理、风险管理、客户管理才是大模型在金融领域的核心应用场景。
 
2 智能风控的进一步发展需要自我革命
 
智能风控的发展经历了三个阶段:一是规则驱动阶段,将部分简单高频的人工审批变为基于规则的自动化审批,智能风控进入"专家规则"时代;

二是数据驱动阶段,数据技术激活了算法的发展潜能,也使得智能风控进入"数据+算法"时代;

三是模型驱动阶段,随着大模型对社会平均智能提升作用的显现,智能风控由"基于历史数据的预测"的被动风控阶段跨越到"基于模型对抗"的主动风控阶段。

目前正处于第二阶段与第三阶段的更迭时期,智能风控的发展陷入了瓶颈,主要体现在数据、模型、成本、对抗等四个瓶颈。

一是数据瓶颈。从理论上看,商业银行所采集的历史数据无法有效应对黑灰产的新型恶意攻击;从实践上看,叠加数据治理成本、数据安全风险等,基于特征库的数据价值挖掘对模型分辨率提升的边界效应逐步下降。

面对新业务的发展、新区域的拓展,中小银行对于“小样本、零样本”的建模需求与日俱增。
 
二是模型瓶颈。传统模型是单任务模型,不同的模型算法可应对不同的任务,以客户画像为例,传统模型是一系列不同算法的小模型,如以统计算法计算银行的九种资产、以网络图谱计算客户关系、以树模型计算客户偏好,其数据分析结果均为固定化的评级评分等;大模型相对于传统模型具有通用优势与对抗优势,不仅可以感知描述客户画像,而且能够进一步感知风险浓度、欺诈态势等。
 
三是成本瓶颈。传统的智能风控体系成本较高,主要包括人力成本、科技成本、数据成本以及试错成本等。高昂的成本极大限制了中小银行智能风控的发展,而大模型的出现似乎能够解决这一问题。

四是对抗瓶颈。随着客群下沉与黑灰产新型攻击挑战的日益严峻,基于历史数据预测未来的风控逻辑的模式备受质疑,基于传统ABC卡的通用策略也出现效能下降的情况,因此对抗的升级正在改变传统的智能风控体系。
 
3 对大模型在金融业落地的思考
 
1.三层落地框架

大模型在金融领域的应用呈现出三层金字塔结构:底层是通用的基础大模型底座,中间层是金融行业级大模型,顶层是各家金融机构的任务级大模型。

基础大模型底座提供的是通用能力,由实力较强的头部AI公司开发,这类公司拥有海量的数据和雄厚的算力;金融行业级大模型提供的是金融的行业能力,由与金融机构合作的AI公司开发,这类公司拥有金融行业的数据与知识,并且对金融行业的应用场景十分熟悉;



任务级大模型通常是由银行自主开发或与AI公司合作开发的适合自己的大模型,用于执行具体的工作和任务。

2.中小银行构建大模型能力的路径

中小银行的科技投入有限,要把有限的资源放在刀刃上,需要完成三件事:一是数据整合,将银行内部的数据进行整合,并将外部数据作为必要的补充,形成特色知识库;

二是算力合作,中小银行的算力有限,而算力又是"非核心竞争力的专业能力",因此建议其采用云模型等方式进行外包;

三是模型精调,即结合行内大数据与知识库,以银行的小规模算力迁移大模型能力,打造轻量级推理模型(精调模型)。

3.落地的关键点:自主可控自主可控是大模型在金融行业落地的关键点,可以从三个层面来实现:

一是硬件层面的自主可控;

二是软件层面的自主可控;

三是生产内容的自主可控

,也称为“AI对齐”,即在基础大模型层面通过数据集和教练模型,使AI系统的目标和人类的价值观与利益相对齐。

4.落地的目标:“能力对齐”甚至弯道超车

纵观金融科技发展历程,中小银行与大型银行在数字化等方面的差距越来越大,智能风控的差距更是如此。

对大模型的应用可以使中小银行弥补投入不足、数据不足、算法落后、科技落后等方面的缺陷,实现与大型银行的"能力对齐",加之中小银行相对于大型银行拥有更加敏捷灵活的机制,因此,中小银行有望在部分风控场景中实现弯道超车。

注:本文刊于《中国金融电脑》2024年第1期
零壹财经 数字经济决策服务平台
评论 (0)
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 352浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 118浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 528浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 713浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 342浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 83浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 608浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 417浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 475浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 243浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦