STM32单片机:独立看门狗、窗口看门狗的配置

21ic电子网 2020-09-30 00:00


SATM32单片机的看门狗有独立看门狗和窗口看门狗之分,这两者的工作原理却完全不同,今天来看一下他们的具体区别和配置方法。


▍STM32独立看门狗

由专门的低速时钟(LSI)驱动,即便是主时钟发生故障它仍能够有效,所以此狗狗可以工作在与主时钟无关的要求下,或者待机模块下等,所以它叫独立看门狗,注意一旦开启此看门狗则只能由MCU复位后才清除,让它不再工作。

它的时钟是一个内部RC时钟,它会在30KHZ到60KHZ之间变化,并非是精确的40KHZ,而只是一般计算时取40KHZ。

独立看门狗需设置四个寄存器如下:


其中,预分频寄存器(IWDG_PR),最低三位PR[2:0](Prescaler divider)有效,可设置有8种不同的计数器时钟预分频因子。

重装载寄存器(IWDG_RLR)低12位RL[11:0]: 看门狗计数器重装载值 (Watchdog counter reload value) 有效,用来设置计数器的重装载值。

注意要设置以上两个寄存器的值需满足两个条件,详见如下:

键寄存器(IWDG_KR),用来控制去除IWDG_PR和IWDG_RLR写保护功能以便正常写值,向此寄存器写入0x5555则暂时去除IWDG_PR和IWDG_RLR的写保护功能才可向两个寄存器中写值。

当向此寄存器写入0xAAAA则IWDG_RLR的值会重装载,防止MCU复位,向入0xCCCC是开启狗立看门狗动作。

状态寄存器(IWDG_SR)最低两位有效RVU: 看门狗计数器重装载值更新 (Watchdog counter reload value update) 标识位和PVU: 看门狗预分频值更新 (Watchdog prescaler value update) 标识位,分别用来指示此时是否可向IWDG_RLR  和 IWDG_PR写值,此寄存器由硬件置1与清0,只有当为0时才可向上面两个寄存器写值。

它的初始化过程大致如下 : 

//时间计算(大概):Tout=((4*2^prer)*rlr)/40 (ms)
void IWDG_Init(u8 prer,u16 rlr)
{       
        IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable); 
         IWDG_SetPrescaler(prer);   
         IWDG_SetReload(rlr); 
         IWDG_ReloadCounter();      
         IWDG_Enable(); 
}


喂狗可通过调用如下函数进行:


IWDG_ReloadCounter();//reload
另外要注意不要使用硬件时钟中断喂狗,因为硬件时钟中断一般都有较高优先级且独立于主控程序,这样有时会出现主控程序虽然跑飞了,但仍能够正常喂狗的现象。

独立看门狗能够在一定程度上监控着程序正常运行,然而我认为更加强大,应用更灵活及更能保证程序稳定运行的还属窗口看门狗,虽然它开始时不太好理解。

STM32窗口看门狗

共三个寄存器,如下图:


看似简单,但设置及应用起来有不少玄机。

控制寄存器(WWDG_CR)中的值必须在0xFF与0xC0之间, 因为它的第0至第6位为递减计数器CNT,在它的第6位变为0时将产生复位,所以在初始化时需要为1,第7位WDGA是用来设置启动或禁止窗口看门狗的,当为1进才会启动窗口看门狗,所以第6和第7位都需为1,即WWDG_CR 的值需要大于等于0xC0 。

配置寄存器(WWDG_CFR) 第0至第6位 是设置窗口边界值用的,只有当递减计数器CNT的值小于边界值时才可以喂狗,过早不行,狗还不饿,撑死了。

并且7位递减计数器CNT减少到0x3F时即T6位变为0,此时MCU也会复位,过晚了,狗饿死了。

所以必须在指定的时间范围喂狗,过早或过晚都将产生复位,而这样设计可以减少软件跑飞了却仍能够歪打正着地喂狗的发生概率。

状态寄存器(WWDG_CFR) 只用到了第0位,EWIF(Early wakeup interrupt flag )是提前唤醒中断标识,当递减计数器CNT的值到达0X40(若再减少一次则T6位变为0,产生复位)时此位由硬件置1,且需用软件清0,注意无论中断是否使能此位都会被硬件置1。

而提前唤醒中断使能设置是在配置寄存器(WWDG_CFR)第9位EWI(Early wakeup interrupt),此位需由软件置1,则会在当递减计数器CNT的值到达0X40时产生中断,并且与EWIF不同,此位是由硬件清0。

另外控制寄存器(WWDG_CR)中第7位WDGA(Activation bit)激活位,需用软件来置1,以启动窗口看门狗,并且一旦启动后,只能在复位或重启后由硬件来清0。

配置寄存器(WWDG_CFR)的第8位和第7位WDGTB[1:0]用来设置时基(Timer base)预分频数。

 以上描述可参考下图以更清晰的理解:


窗口看门狗应用时还要注意算准最小与最大喂狗时间,以便正确地喂狗,如下:


在PCLK1频率为36MHz 时,则

上窗口时间:T_min = 4096 * (2^WDGTB)*(WWDG_CR[6:0] - WWDG_CFR[6:0])/36 (us)
下窗口时间:T_max = 4096 * (2^WDGTB)*(WWDG_CR[6:0] - 0x40)/36 (us) 。

喂狗动作需在这段时间之间进行,而喂狗动作为向控制寄存器(WWDG_CR)中写值。

窗口看门狗中断函数void WWDG_IRQHandler(void);是用来做什么的呢。

窗口看门狗中断函数是在递减计数器减少到0x40是被调用,因为它本身计数就比较慢,所以离数到0x3F复位还有一段时间,我认为这样设计是为MCU复位之前留下一点时间,能够使工程设计人员根据需要在中断函数保存一些重要的数据,这样在复位后MCU可知道系统因异常复位的某此状态,以使系统有更高稳定性。

并且我觉得在窗口看门狗中断函数中喂狗没有什么意义,程序本来已经不按正常运行了,还在中断函数中喂狗防止复位只会错上加错,不好好利用它干点正事, 更是浪费资源。

这点上我个人认为不要被点原子示例代码误导哦,但其还是有部分借鉴意义的,以下为初始化相关代码:

  //窗口看门狗中断服务设置程序
    void WWDG_NVIC_Init()
    
{
      NVIC_InitTypeDef NVIC_InitStructure;
      NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);      
      NVIC_InitStructure.NVIC_IRQChannel = WWDG_IRQn;       //WWDG 中断
      NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2//抢占2 子优先级3 组2
      NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;    //抢占2,子优先级3,组2
      NVIC_Init(&NVIC_InitStructure);                       //NVIC 初始化
    }
//保存WWDG 计数器的设置值,默认为最大.
u8 WWDG_CNT=0x7f;
 //初始化窗口看门狗
    //tr  :T[6:0],计数器值
    //wr   :W[6:0],窗口值
    //fprer:分频系数(WDGTB ),仅最低2 位有效
    //Fwwdg=PCLK1/(4096*2^fprer).
    void WWDG_Init(u8 tr,u8 wr,u32 fprer)
    {
      RCC_APB1PeriphClockCmd(RCC_APB1Periph_WWDG, ENABLE); // WWDG 时钟使能
      WWDG_CNT=tr&WWDG_CNT;      //初始化WWDG_CNT.
      WWDG_SetPrescaler(fprer);        //设置IWDG 预分频值
      WWDG_SetWindowValue(wr);       //设置窗口值
      WWDG_Enable(WWDG_CNT);       //使能看门狗,设置counter
      WWDG_ClearFlag();               //清除提前唤醒中断标志位 (注:若没有此句则会在初始化后先进入中断一次)
      WWDG_NVIC_Init();               //初始化窗口看门狗NVIC
      WWDG_EnableIT();                //开启窗口看门狗中断
}


以上代码朋友们也可以跳到库函数代码中自己研究下,另外要说明下的是WWDG_EnableIT(); 函数相关代码


#define CFR_EWI_BB        (PERIPH_BB_BASE + (CFR_OFFSET * 32) + (EWI_BitNumber * 4))

用到位带操作,具体理解可参照《Cortex-M3权威指南》第五章的位带操作相关介绍(具体89页)。


-END-
来源:玩转嵌入式
21ic电子网 即时传播最新电子科技信息,汇聚业界精英精彩视点。
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 21浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 21浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 27浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 150浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 115浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 29浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 23浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 22浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦