吉林大学杜菲团队:一种高能量、高功率钠电池正极材料

果壳硬科技 2024-01-25 11:31

欢迎星标 果壳硬科技


研究团队 | 作者

酥鱼 | 编辑


近日,吉林大学杜菲教授课题组开发设计了一种低成本的新型杂化磷酸盐钠电池正极材料,并将这种材料用于构筑高能量、高功率钠离子电池。该研究成果发表在《德国应用化学》(Angewandte Chemie)上。果壳编辑团队第一时间联系了研究团队,文章通讯作者杜菲教授告诉果壳:“我们近期开发了新型杂化磷酸盐钠电池正极材料,这种设计理念可以实现磷酸盐类正极材料的性能提高,也是该类材料开发的新思路。”



作为一种低成本的新型钠电池正极材料,杂化磷酸盐材料(分子式为Na4Fe3(PO4)2P2O7)由于优异的晶体结构稳定性和电化学性能受到学术界、产业界广泛关注。然而,其在合成过程始终存在m-NaFePO4杂相,制约了材料性能的充分发挥。此外,该材料结构演化机制与充放电曲线特征相悖,相关相变机制仍不清楚。


固溶体分子结构设计策略


在传统锂电池领域,富锂正极材料的化学式有两种形式,单相固溶体形式Li[NixLi(1−2x)/3Mn(2−x)/3]O2,以及两相形式xLi2MnO3·(1−x)LiMO2。研究团队猜想,既然按照正常化学计量比合成的材料无法避免NaFePO4杂相的生成,那么是不是可以将杂化磷酸盐钠电材料Na4Fe3(PO4)2P2O7看作两相形式2NaFePO4·Na2FeP2O7?如果在合成过程中减少NaFePO4的比例,会不会消除杂相呢?


基于上述想法,研究团队通过控制NaFePO4含量,得到了不同比例的(2-x)NaFePO4·Na2FeP2O7材料。研究发现,纯相材料比例区间为1.1-1.4。当比例由2减少至1.4时,得到新型纯相材料Na3.4Fe2.4PP,而继续减少至1.1,则出现Na2FeP2O7杂相。由于非活性杂相的消除,该钠电正极材料展现出优异的电化学性能,不仅能实现超高倍率性能(100 C),而且实现了14000次的超长循环寿命。


本研究还揭示了不同于先前报道的两相转变,材料在充放电前后晶格参数和晶胞体积之间差值小于1%,表明了其高度可逆性与结构稳定性。


此外,通过原位XANES以及非原位NMR分析,文章系统讨论了Na3.4Fe2.4PP的电荷补偿机制与Na+脱嵌顺序,为Fe基杂化磷酸盐材料的合成和未来应用提供了宝贵的见解与新认知。


同时,研究团队惊喜地发现,该策略同样适用于Co基杂化磷酸盐材料(2-x)NaCoPO4·Na2CoP2O7,其纯相材料比例区间为1.3-1.6。目前,团队正在深入探索该策略在其它材料体系的可行性。



产业化前景


这种分子结构设计方法能够拓宽现有电极材料研究思路,为新型高能量密度电池提供新的解决方案。目前,钠离子电池的产业化尚处在初始阶段,还需要完善优化各个方面。此外,相关的厚电极膜设计和正极材料设计是独立的,可以应用于新的材料及电池体系。若要走上产业化道路,如何保证材料合成工艺的稳定性,以及设计适用于不同场景的厚电极膜是接下来需要解决的问题。


研究团队

(请上下滑动查看)

通讯作者 杜菲:吉林大学教授,博士生导师,吉林大学物理学院副院长,新型电池物理与技术教育部重点实验室主任。2008年获得吉林大学材料科学与工程博士学位,师从陈岗教授,同年留校任教。近年来,杜菲教授围绕着新型储能电池体系设计、关键电极材料的开发等研究领域开展了大量的研究工作,在Nature Materials, Nature Communications, Advanced Materials,  Angewandte Chemie等国际著名杂志发表论文200余篇。作为第一完成人获2021年吉林省自然科学一等奖一项。


通讯作者 田瑞源:吉林大学研究员,博士生导师,入选“吉林省高层次人才”。2021年加入吉林大学物理学院新型电池物理与技术教育部重点实验室,长期致力于二次电池厚电极膜的量化设计与精准加工,电池物理模型构建及高能量密度电池产业化等研究工作。2015年中国科学院国家纳米科学中心博士毕业,曾在以色列巴伊兰大学Doron Aurbach教授课题组、爱尔兰都柏林圣三一学院物理学院院长Jonathan Coleman院士团队从事博士后研究。在Nature Energy, Nature Communications, Angewandte Chemie, Advanced Energy Materials等国际著名杂志发表论文40余篇。


通讯作者 滑纬博:西安交通大学特聘研究员,博士生导师,入选陕西省“秦创原引进高层次创新创业人才”、西安交通大学“青年拔尖人才支持计划”。研究方向为新能源电池关键材料的研发、精准构筑及反应机理研究,特别是基于同步辐射光源、中子源等多尺度原位无损表征技术研究锂/钠离子电池正极材料在合成过程和电化学储能过程中的机理分析。


通讯作者 唐明学:北京高压科学研究中心研究员、博士生导师。博士毕业于德国北威州光电研究中心(CeOPP),曾经在欧洲高场核磁共振中心、阿斯利康研发总部、法国科学院、美国国家强磁场实验室进行博士后研究。他的主要研究兴趣是拓展磁共振方法(NMR/MRI/EPR)解析功能材料的结构和工作机制。部分科研成果已在Nature Communications, Journal of the American Chemical Society, Angewandte Chemie等杂志上发表。


(共同)第一作者 范紫薇:吉林大学物理学院2020级硕士研究生;


(共同)第一作者 宋万德:吉林大学物理学院2022级博士研究生。


论文信息

发布期刊 Angewandte Chemie International Edition

发布时间 2024年1月2日

文章标题 Insights into the Phase Purity and Storage Mechanism of Nonstoichiometric Na3.4Fe2.4(PO4)1.4P2O7 Cathode for High-Mass-Loading and High-Power-Density Sodium-Ion Batteries

(https://doi.org/10.1002/anie.202316957)

如果你是投资人、创业团队成员或科研工作者,对果壳硬科技组织的闭门会或其它科创服务活动感兴趣,欢迎扫描下方二维码,或在微信公众号后台回复“企业微信”添加我们的活动服务助手,我们将通过该渠道组织活动——


果壳硬科技 果壳旗下硬科技服务品牌,致力于连接科学家与投资人、创业者,在新一轮技术革命和资本流动中,做最懂硬核科技的团队。
评论 (0)
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 210浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 124浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 145浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 70浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 189浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 97浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 163浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 152浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 200浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 71浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 209浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 200浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦