芝能科技出品
机器人领域中,灵巧手的触觉传感器成为抓握的核心元件,感知技术演进经历了数十年,从刚性感知路线逐渐发展为柔性、高灵敏、高阵列的方向。
触觉传感器是机器人进化的核心需要解决的问题,芝能科技将带你逐步了解触觉传感器的技术原理、技术路线、发展趋势,让你更了解智能AI机器人技术迭代。
触觉传感器的基本原理是将外部压力转化为电信号,以估算和测量力和剪切力。这其中,关键的技术指标包括空间分辨率、力敏感性、减少零漂和边缘层盲区检测,以及优化处理数据的能力。触觉传感器需要考虑多个性能参数,包括灵敏度、探测范围、线性度、响应时间和空间分辨率。这些性能要求高度依赖于目标应用程序。
触觉传感器的传导原理可以参考人体皮肤的压力感应特性:
机器人触觉传感器的技术路线已经衍生出多种类型,其中电阻式、电容式、压电式、光学式、流体式等成为主流。这些传感器在原理上各有千秋,但都致力于将外部施加的力转化为电阻或电容的变化,实现对力和剪切力的测量。光学式传感器具有较高的空间分辨率和较宽的动态响应范围,而流体式方案如BioTac通过柔性橡胶皮和离子导电流体实现对法向力和剪切力的测量。
近年来,学界和业界开始探索多模式和新型触觉传感器,以提升感知性能并降低生产难度。多模式触觉传感器融合多种传感技术,集成电气接口并优化制造流程,以实现多阵列单芯片。同时,新型传感器如量子隧道效应传感器、有机场效应晶体管传感器、结构声触觉传感器和纳米触觉传感器等不断涌现,为触觉传感技术的发展带来新的可能性。
触觉传感器主要应用于以下四个方面:
触觉传感器技术的进步在机器人领域催生了更灵活、智能的机械手,为特定任务的执行提供了新的可能性。特斯拉的GEN2机器人展示了令人瞩目的灵敏动作,为触觉传感技术的未来发展提供了新的方向。随着技术的不断发展,触觉传感器有望成为更多智能系统的重要组成部分,为人机交互提供更为自然和智能的体验。