中科院王金桥:多模态大模型的发展与思考

原创 爱分析ifenxi 2024-01-19 14:01






1 月 9 日,爱分析成功举办 2024 爱分析·AI与大模型高峰论坛,邀请了各领域的专家学者、企业代表、大模型厂商和实践专家,分享前沿的技术进展和领先企业内的落地场景与实践经验。
今天为大家带来多模态大模型的技术原理和发展趋势。

分享嘉宾|王金桥 中国科学院自动化所研究所副总工程师、武汉人工智能研究院院长

内容已做精简,如需和专家交流&获取专家完整版视频实录,请扫码。


过去十年的人工智能,我们称为是专用智能,就是用大数据训练一个小模型,解决单一的任务。

专用智能有三个问题,第一是泛化能力差,这个场景能识别目标,换个场景就识别不了;第二是智能性差,只能做一些感知任务,例如识别人脸,识别语音,识别物体;第三是通用性差,一个模型只能做一个任务,导致整个人工智能的应用非常的碎片化,每个场景都要很多人采集大量的数据标注训练,在监督学习的范式下做人工智能的落地,就遇到了巨大的一个挑战:难以实现商业的闭环。
所以大家都开始做“大数据+大模型+大算力”,训练类人一样通用性的模型,相当于一个模型做多个任务,无论是感知、认知、推理、决策。
Open AI 在2023 年收入超过 16 亿美金, Open AI 和竞品的一些实践,也证明整个大模型是能够实现商业闭环,而且一个模型可以做多个任务。所以现在大家的各个场景都在全面的拥抱大模型,现在大模型和各个场景结合,也是整个人工智能落地的一个非常好的前景。
从 2022 年的语言模型,现在逐步演进到多模态,因为多模态的思考方式才更像我们人一样感知、认知、和环境进行交互、学会使用工具。同时它的成长也是随着年龄一直到  14 岁,基本上它的智力进化相对是一个比较持续完善的过程,而且还有人看不到的一些信号理解。
整个的大模型也是从大语言模型到多模态,像多模态交互以及多模态的智能体,到群体智能这是整个大模型的技术路径。
当然我们也一直在这方面做了很多的工作,特别是在我们自动化所在 2020 年成立了全国第一个大模型研究中心,把视觉团队、语言团队还有语音团队合并成了一个团队。自动化所是国内在人工智能领域最早的模式识别国家重点实验室,它在人工智能的每个细分领域都有非常多的团队,所以在合并之后就专门成立了这个中心来做大模型的攻关,全面进入自监督学习加微调的新范式。
一直到 2021 年我们发布了业内第一个多模态的大模型“紫东太初”,用了大概9亿的弱相关数据,模型自监督的学习自身的知识,这是我们提出的第一个跨模态自监督学习的范式。
在 2023 年的 6 月发布了 2.0 的版本。1.0 开发最早是聚焦在异构数据的图像、文本、语音的多模态自监督学习。希望图像的每个区域,能对应语言的每个词或者是每个 token 做弱的对应和对齐,在词语级别以及它模态级别的对齐后,随便的遮盖掉任何一个模态、或者任何一个字、或者任一个语音片段、图像的任何一个区域,就能实现跨模态的自监督,这就是能够实现海量的知识的学习,以及潜在关系的学习。例如我们所看到的“岩石”“海”“女人”“牛仔裤”“脚”“提琴”它们之间空间知识的关系,大模型会形成隐式知识的表示。
最早期实现的跨模态生成,是不同模态之间自动的转换,这是 1.0 的版本。在 2.0 阶段进一步的把人看不到的信息,像雷达、红外、各种各样的光谱,把这些信息都融合到框架里。当然我们发现在框架里,不是所有的数据都能弱相关,特别是红外的数据和三维点云的数据,往往它对齐的是图像空间,我们叫做分组对齐,在分组对齐的过程中,将各种多模态的数据混排。
我们一直探索的、最重要的大模型基石就是 Transformer 的结构。在刚才的跨模态对齐中,固定化的划分模块或者 token ,很难实现语义结构的完整性,所以更重要的是如何去更好的捕获更有表述力和特征的区域。在这里我们提出了可变形的 Transformer 模块。这个模块一定是语义敏感的区域,通过多头的注意力机制,每个模块的尺寸是不固定的,叫做可变形的。这就是类似在机器学习 HOG 特征对应一个可变形 HOG ,这样随着模块可变形的空间,就能更好的捕获语言语义、图像、视频、音频的动态区域大小,捕获更精准的语义。
同时在多模态的序列对齐里,把图像看成小作文,把它展成多模态的不同大小的框,或者每个区域把它展成序列,通过图像序列和语言标签序列,把每个框的坐标也作为序列的输出,就形成序列的多任务对齐方式。这就是在解决不同模态、不同场景的数据之间,多任务自回归的序列。这样的回归机制,就可以保证自回归损失和重构的损失,收敛的速度更快一些。
同时在细粒度的表示中,除了有框的表示,在视觉的任务中,多个任务都可以用一种表示,就是像素级的表示,既可以画框,也可以画轮廓,也可以给它做一些分割。另外还可以根据用户的需求,分割的力度不一样,这样就形成了基于提示的对象提取,把对标  Meta 的 SAM 模型,引入全实力分割的检测头的 Fast SAM 方法,让分割任务的性能跟 Meta 的 SAM 性能相当,同时处理的速度提高了 50 倍,全面的实现在视觉任务上,支持多尺度、多粒度的目标提取,实现了在多模态对齐里,能够支撑各种各样的任务输出。
同时现在大模型的小型化也是非常主流的一个趋势。我们现在这方面做了很多的工作,第一是在大模型的高效训练上,第二是在推理上。通过通道的系数化和空间的系数化,使 token 建立共享的机制,从而保证推理的参数直接能降低 35% 。同时在训练的过程中,也用了各种各样的并行策略,以及混合精度的策略,把各种各样的算子融合、替代和加速,使效果能够实现高速的训练。最典型的一个方法,叫做基于波动性度量的高效模型剪枝。在做大模型落地的过程,比如金融的场景中,发现用一个 6B 的模型在做推理的时候,度量每个权重会发现有 50% 的权重基本上是不变的,就类似大模型做能力分区。例如在人做某一项专业任务的时候,其他的神经元很多都不激活,它的参数、权重是不怎么变的,所以就直接把参数记录下来,算过的数就不算了,这样直接使它参数量降低 50% ,推理速度提高 66% ,这是目前最简单粗暴的一个剪枝方法。只要看一下哪些权重是不变的,把它固定下来。这样的效率是可以用到任何一个模型结构里,都能达到高效的推理。
特别在手机端,不同的任务可以激活不同的权重,就实现了基于多模态的任务,可以进行图文并茂的任意回答。例如你让他把这个胡萝卜框出来,他就给你框出来,你让他的画框、检测关键点、分割,都可以实现多任务的推理和高效的输出。也可以给它一个三维的点云,同样它能输出有多少个房间,现在在跟设计公司,做一些设计、装修,通过  AI 的自动化三维设计,能够使它的效果跟人做对齐。
现在人工智能的感知能力、逻辑、推理、解题都取得了巨大的进步,但是仍然存在的一些问题。第一是幻觉,要外挂知识库;第二是自主进化,我们只知道 GPT 4 只到 2023  年 4 月份,后面就不知道了。如何通过搜索增强,以及让最新的数据喂进去,也不遗忘以前的数据,同时保持新的数据学习。这就是它的泛化能力和自学能力提出更高的要求。
另一方面大模型能够借助工具通过 agent 能够更好的与环境进行交互,通过单源的场景,从语言场景到多模态,再到真正的融入生活中,通过各种各样 agent 的信息消化,实现认知世界到融入环境的跨越,这也是整个大模型生成归纳新概念的能力。
现在AI 在各个领域都一些典型的应用,包括客服,知识库,同时更希望大模型能够提供规划任务的拆解和推理能力,所以在整个大模型的发展趋势里,从大数据智能、语言智能到多模态的具身智能、群体智能、混合智能、最后的自主智能,最终大模型还是要和人进行协同的,和价值观的对齐。
整个大模型现在进入到新的阶段,原来的专用模型,到现在兼采集数据、标注、训练,然后不断的做场景适配,相当于手工作坊的模型研发时代,基本上算法工程师占据了交付的主力军。再慢慢的到工业化的开发时代,把世界知识的底座模型训好。各领域训练行业专属模型,然后再做微调,只需要输出需要的东西,大模型就变成了平台,相当于工业化的研发模式。而且可以减少对数据的依赖,可以把知识和经验有效的进行编码,最终的还可以去辅助更多的规划和决策。
所以将整个的趋势做一个总结:
第一,多模态、多任务的高效对齐协同,包括价值观的对齐。
第二,大模型深度结合,串联小模型。不是所有的情况都由大模型解决,什么情况下需要小模型呢?像人脸识别,每人有 40 张照片,共有七八千万人的ID。训练一个两兆的模型就能实现这种亿万分之一的误识率。所以并不是大模型把小模型都替代了,而是更多开放的、泛化的场景,需要大模型串联小模型加各种工具,作为中间的桥梁把各种各样的工具和能力串联起来。
第三,更强的理解、推理、生成和交互能力。真正的大模型竞争是抢占科技的制高点,推理生成和复杂的规划能力,才是真正的模型。当你发现机器人场景中,你让他做一些任务发现都不行, GPT 4 有的时候也不行,就需要更多高质量的数据,使它变得更强。
第四,可控与安全性。我们要让模型不能有偏见,价值观对齐,对人没有伤害。
以上四点是整个的大模型发展趋势,今天跟大家分享就是这些,谢谢。

长按二维码,领取完整版视频实录和课件

中国科学院自动化所副总工程师,紫东太初大模型研究中心常务副主任,研究员,博导,武汉人工智能研究院院长,中国科学院大学人工智能学院岗位教授,多模态人工智能产业联盟秘书长,主要从事多模态大模型、视频分析与检索、大规模目标识别等方面的研究。共发表包括IEEE国际权威期刊和顶级会议论文300余篇,国际期刊50余篇,国际会议220余篇。完成国家标准提案3项,发明专利36项,10项国际视觉算法竞赛冠军,新时代中国经济创新人物,北京市科技进步一等奖,北京市自然科学二等奖,世界人工智能大会SAIL奖,吴文俊人工智能科技进步二等奖,中国发明创新银奖,中科院科苑名匠团队。

注:点击左下角“阅读原文”,领取专家完整版实录


爱分析ifenxi 爱分析是一家中国领先的数字化市场研究与咨询机构。
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 121浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 84浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 90浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 44浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 169浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 91浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 111浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 100浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 89浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 51浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 71浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 175浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦