实战|YOLOv8也能打小目标检测

原创 OpenCV学堂 2024-01-18 14:45

点击上方蓝字关注我们

微信公众号:OpenCV学堂

关注获取更多计算机视觉与深度学习知识

数据集地址

该图像数据集是 通过一个特色的渠道获取了数据集,然后一通处理以后得到的数据,其中一张图的一部分显示如下(因为保密):。

整个数据集有100张图像,但是每张图像上的对象实在太多了,每办法,花了两天的时候,标注了其中65张图像,60张作为训练集、5张做为测试集。算是完成了数据标注工作。

模型训练

准备好数据集以后,直接按下面的命令行运行即可:

yolo train model=yolov8s.pt data=sperm_dataset.yaml epochs=50 imgsz=1280 batch=8


导出与测试

模型导出与测试

yolo export model=sperm50_640_best.pt format=onnxyolo predict model=sperm50_640_best.pt source=.\sperm_test




部署推理

转成ONNX格式文件以后,基于OpenVINO-Python部署推理,相关代码如下

ie = Core()
for device in ie.available_devices:
    print(device)

# Read IR
model = ie.read_model(model="sperm_best.onnx")
compiled_model = ie.compile_model(model=model, device_name="CPU")
output_layer = compiled_model.output(0)

frame = cv.imread("D:/1.jpg")
bgr = format_yolov8(frame)
img_h, img_w, img_c = bgr.shape

start = time.time()
image = cv.dnn.blobFromImage(bgr, 1 / 255.0, (640640), swapRB=True, crop=False)

res = compiled_model([image])[output_layer] # 1x84x8400
rows = np.squeeze(res, 0).T
class_ids = []
confidences = []
boxes = []
x_factor = img_w / 640
y_factor = img_h / 640

for r in range(rows.shape[0]):
    row = rows[r]
    classes_scores = row[4:]
    _, _, _, max_indx = cv.minMaxLoc(classes_scores)
    class_id = max_indx[1]
    if (classes_scores[class_id] > .25):
        confidences.append(classes_scores[class_id])
        class_ids.append(class_id)
        x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item()
        left = int((x - 0.5 * w) * x_factor)
        top = int((y - 0.5 * h) * y_factor)
        width = int(w * x_factor)
        height = int(h * y_factor)
        box = np.array([left, top, width, height])
        boxes.append(box)

indexes = cv.dnn.NMSBoxes(boxes, confidences, 0.250.45)
for index in indexes:
    box = boxes[index]
    color = colors[int(class_ids[index]) % len(colors)]
    rr = int((box[2] + box[3])/4)
    cv.circle(frame, (box[0]+int(box[2]/2), box[1]+int(box[3]/2)), rr-4, color, 2)
    cv.putText(frame, class_list[class_ids[index]], (box[0] + int(box[2] / 2), box[1] + int(box[3] / 2)),
               cv.FONT_HERSHEY_SIMPLEX, .5, (000))
cv.putText(frame, "gloomyfish@2024", (2045), cv.FONT_HERSHEY_SIMPLEX, 1, (00255), 2)

cv.imshow("YOLOv8+OpenVINO2023 Sperm Count", frame)
cv.waitKey(0)
cv.destroyAllWindows()



扫码学习YOLOv8视频课程

推荐阅读

OpenCV4.8+YOLOv8对象检测C++推理演示

三行代码实现 TensorRT8.6 C++ 深度学习模型部署

实战 | YOLOv8+OpenCV 实现DM码定位检测与解析


好书推荐

《OpenCV应用开发:入门、进阶与工程化实践》全书共计16个章节,重点聚焦OpenCV开发常用模块详解与工程化开发实践,提升OpenCV应用开发能力,助力读者成为OpenCV开发者,同时包含深度学习模型训练与部署加速等知识,帮助OpenCV开发者进一步拓展技能地图,满足工业项目落地所需技能提升。购买请点链接: 
https://item.jd.com/10092255924058.html


学习课程有专属答疑群

负责贴身答疑解惑


读者专属QQ群 :657875553

进群暗号:OpenCV4读者


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 112浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 125浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 105浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 120浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 122浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦