隔离式双向功率转换器的数字控制如何实现?

亚德诺半导体 2024-01-17 18:02

本文探讨隔离式双向DC-DC功率传输的实现方案,即通过调整专用数字控制器,使其除了具有标准的正向功率传输(FPT)功能外,还支持反向功率传输(RPT)功能。文中将介绍系统建模、电路设计和仿真,并通过实验对理论概念进行了验证。应用表明,在两个能量传输方向上,转换效率始终高于94%。



模块化电池储能系统(ESS)有助于可再生电力的有效利用,因而是构建绿色能源生态系统的关键技术。梯次利用电池ESS应用日趋广泛。在这个子市场中,预计高达80%的废弃电池会用于ESS,在固定电网服务中焕发新生,从而将电池的使用寿命从5年延长到15年。预计到2030年,这些系统会给电网增加1 TWh的容量。在不久的将来,这种新兴应用必将在能源市场中变得更加重要。


典型实现方案是将不同电池模组堆叠起来,通过功率转换器将其能量传输到集中式交流或直流母线(随后以某种形式将能量分配给负载)。此类系统的挑战在于,每个模组具有不同的化学组成、容量和老化曲线。在传统的模块化拓扑中,最弱的模组会影响整个电池堆的总可用容量(图1)。


图1.模块化ESS的挑战


为了解决这一限制,在图2所示的架构中,电池堆中的能量通过每个电池模组的单独DC-DC转换器传输到公共中间直流母线。然后,该能量通过主功率转换器支持集中式中压(MV)交流或直流母线。图2中的电压和功率水平是根据市场上ESS的典型数据选择的:48 V电池模组、400 V (DC)中间直流母线、20 kW以上(高功率)主功率转换器以及高达1500 V的集中式母线。


图2.基于电池的模块化ESS


在图2中,电池堆中每个模组的接地基准不同,因此需要通过隔离让每个电池模组实现单独的DC-DC转换器。此外,为了支持梯次利用电池ESS等混合系统,每个转换器还必须能够双向传输功率。这样,就能轻松实现每个模组的独立充放电以及电荷平衡。因此,本文讨论的应用核心模块是DC-DC转换器,它既是隔离的也是双向的。


下面将说明,如何调整功率转换专用的数字控制器(通常仅针对单向功率传输而构建),使其支持双向操作,这样控制器就能作为一种良好的替代方案来安全可靠地实现所需类型的DC-DC转换器。


功率转换应用的专用数字控制器

对于高功率DC-DC转换器(大于1 kW)中开关器件的控制,数字控制是当前的工业标准,而且它通常基于微控制器单元(MCU)。尽管如此,由于各种工业应用更加重视功能安全(FS),因此使用专用数字控制器可能更有优势。从系统设计的角度来看,更简单的功能安全认证可以简化设计过程,从而缩短总体开发时间,更快获取收益,因此在模块化实施中特别有利。


专用数字控制器优于MCU的一些原因概述如下。

  • 微控制器依赖于软件,包含的状态数量较多,被认为不稳定,因此在IEC 61508标准制定之前,安全系统中不允许使用微控制器。MCU的大量"功能安全"工作都在软件开发阶段。

  • 除了软件之外,MCU本身也必须经过认证。

  • 虽然专用数字控制器(作为可配置设备)仍然是数据驱动的,但其配置过程使用有限可变语言(LVL),而不是MCU特有的完全可变语言(FVL)。

  • 作为顺序数字机,专用数字控制器的功能可以通过测试全面验证,而这对于MCU中的软件来说一般是不可能的。因此,当使用专用控制器时,设备会集成核心安全功能。

  • 与专用控制器中的集成安全功能相比,MCU实现方案中增加的安全功能可能需要相当多的额外硬件。当使用故障模式、影响和诊断分析(FMEDA)时,额外的硬件往往会增加系统级别的复杂性。

  • 使用专用控制器时,额外的安全性(如果需要)可以通过外部MCU(通常在系统级别提供)获得。


ADI公司的 ADP1055 是一款专为隔离式DC-DC高功率转换而设计的数字控制器,提供了一系列功能来提高效率和安全性。这些功能包括:可编程过流保护(OCP)、过压保护(OVP)、欠压保护(UVLO)和过温保护(OTP)。与市场上许多现成的等效器件一样,该控制器设计用于单向能量传输,即FPT。为了实现双向操作,使用该控制器的应用必须进行调整,以便也能在RPT下工作。下一部分将探讨对FPT和RPT模式都很重要的一个方面,即目标DC-DC转换器的效率,在调整过程开始之前必须了解这一点。


实现高效能量转换

在各种隔离式双向直流功率传输技术中,图3a中的架构因其实现简单而成为商业上最常用的架构之一。


图3.功率转换拓扑仿真:标准操作中的(a)模型和(b)效率


这种拓扑既可以看作是FPT中的电压馈送全桥到中心抽头同步整流器,也可以看作是RPT中的电流馈送推挽式转换器到全桥同步整流器。为了说明应用的常见挑战,图中显示了一个典型用例,其初级(直流母线)为400 V (DC),次级(电池模组)为48 V (DC),功率水平大于1 kW。使用 LTspice® 对开关频率为100 kHz的典型宽带隙(WBG)功率器件的操作进行仿真。仿真使用的参数如表1所示。


表1.仿真研究参数


图3b中的结果显示,当使用常规硬开关(HS) PWM时,较高功率水平下的效率迅速下降。将RPT与FTP进行比较时,这一点更加突出。为了改进操作,我们确定了两种主要损耗机制,通过下文说明的相应开关技术可以降低损耗。


  • 软开关:图4a显示在这种低漏感设计中,当使用常规PWM时,初级开关MA和MB在无源到有源开关转换过程中不会快速关断。这种状况会在整个系统中产生较高的开关损耗。在这种情况下,使用相移(PS) PWM(亦称零电压开关(ZVS)或软开关)有助于在这些转换期间将漏源电压降至零。为此,我们可以提供与负载相关的适当死区时间,使得开关的漏源电容可以完全放电。应用相移的结果如图4b所示。

        

  • 图4.初级开关无源到有源转换:(a) HS PWM,(b) PS PWM


  • 有源箝位:图5a显示在次级开关MR1和MR2关断期间,在其漏源电压上观察到很大的尖峰和振铃。这些瞬态事件会危及开关的完整性,浪费能量,并导致电磁干扰(EMI)。使用附加开关(例如图3中的MCLAMP)实现数字控制有源箝位是减轻该尖峰负面影响的较佳备选方案。这样可以进一步提高该架构的效率。应用某种形式有源箝位的结果如图5b所示。

       

    图5.初级开关无源到有源转换:(a) HS PWM,(b) PS PWM


实施这些策略后,5 kW时RPT模式下的转换器效率从不足80%提高到90%以上。这些仿真研究也预测到FPT和RPT具有相似的效率,如图3b所示。


为了实现这些开关功能,ADP1055提供6个可编程PWM输出以形成开关时序,并提供2个可配置为有源箝位吸收器的GPIO。这两种功能都可以在用户友好的GUI中轻松编程实现。有关该数字控制器的这些和其他功能的优势,请参阅 ADP1055-EVALZ用户指南 ,其中考虑了标准FPT应用。


确定实现可行效率水平的机制(对于本应用的FPT和RPT模式均适用)后,接下来我们探讨如何调整以适应RPT。


适应反向功率传输

为了演示所研究的应用在RPT下的运行情况,我们创建了低压(LV)实验装置进行概念验证。此装置基于 ADP1055-EVALZ用户指南 中的硬件,最初设计用于48 VDC至12 VDC/240 W FPT的标准情况,使用ADP1055作为主控制器,开关频率fSW = 125 kHz。为了适应RPT操作,需要适当修改硬件和软件。图6(上)显示了针对此任务的信号链硬件部分,其重点如下:


图6.信号链利用专用数字控制器来适应RPT


  • 使用两个匹配的隔离式半桥栅极驱动器 ADuM3223 来导通和关断四个初级开关。这些驱动器的精密时序特性(隔离器和驱动器最大传播延迟为54 ns)可准确地将控制信号反映到PWM中。

  • ADP1055-EVALZ用户指南中的隔离电源单元经过重新接线,并补充了一个辅助精密LDO (ADP1720),以适应系统中的两个接地基准,并为应用中的所有不同IC供电。

  • 在测量部分,分流电阻上的电流测量端子发生交换,以便在控制器的端子CS2+和CS2-上以正确的方向测量整个转换器的变压器次级的输出电流。

  • 最后,隔离式放大器ADuM4195用于安全、准确地测量直流母线电压。在RPT模式下,直流母线电压是输出变量,而在FPT模式下,电池侧电压是受控输出。


基于ADuM4195的测量方案是对控制环路硬件的一项重要补充。除了安全的5 kV隔离电压(从高压初级侧到低压控制侧)、多达4.3 V的宽输入范围以及精度约为0.5%的基准电压外,ADuM4195还有高达200 kHz的最小带宽。与典型的并联稳压器和光耦合器解决方案相比,它支持实现更快的环路操作,从而提供更好的瞬态响应,这对于应用在125 kHz开关频率下的运行至关重要。图7显示了最终的实验装置,图6中增加的硬件在基于ADuM4195的测量子卡中实现,该子卡已添加到ADP1055-EVALZ用户指南中的原始评估板中。


图7.RPT概念验证的实验装置


图6(下)还描述了为适应RPT在软件方面的配置。我们深入研究了数字控制系统。结果通过流程的描述块进行总结说明,如下所示:

  • 通过更改PWM设置,使占空比变化与次级电感充电成比例,来实现正确的稳态响应。这是根据该架构在RPT模式下的升压型操作而得出的。

  • 我们采用ADP1055-EVALZ用户指南中设计的LCL输出滤波器,通过交流小信号等效电路技术来确定设备在拉普拉斯域中的转换函数Gp(s)。与FPT不同,设备在RPT下的响应是具有右侧零点(RHZ)的二阶系统的响应,这是升压转换器在CCM下的典型响应。请注意,这种类型的系统本质上不稳定,需要减少误差放大器的带宽。

  • 利用MATLAB® System Identification Toolbox,根据用作隔离跟随器的ADuM4195的频率响应,对反馈测量Gm(s)进行建模(图8)。经确认,主导极点在200 kHz左右,可确保在控制系统的目标带宽(250 kHz可观测双频的10%左右)之上仍能提供快速响应。

        


图8.ADuM4195的频率响应

  

  • 我们选择在控制器的标准数字补偿器中添加一个极点,以减少整体控制系统的带宽,这在这种非最小相位升压式转换器设备中是必要的。因此,我们使用公式1中的数字控制器(常数定义参见 ADP1055用户指南 )。

      

      

    为将分析保持在拉普拉斯域内,我们根据数字控制理论创建了Gc(z)的连续时间模型Gc(s)。因此,首先添加一个计算延迟(× z-1),而连续时间中的最终表示通过如下方式实现:利用(a) Tustin近似

      

      

    和(b) Padé 近似模拟离散 PWM (DPWM) 延迟 (Tsa/2=1/4fsw),使得:


       

  • 最后,为了设计一个稳定的响应,我们利用MATLAB Control System Designer作为常规连续时间控制环路,研究了开环转换函数Gol(s) = Gp(s) Gm(s) Gc(s)。


由此可以观察到,如果使用与FPT相同的控制常数,RPT下的响应将不稳定。因此,正确设计Gc(s)中常数的最终值对于确保运行可靠至关重要。一旦通过设计实现了稳定的开环转换函数,控制器就会变换回数字域。图9(左)显示所设计的数字滤波器的频率响应Gc(z),利用图9(右)中ADP1055的GUI可以通过图形化方式轻松配置该滤波器。


图9.ADP1055上配置的数字滤波器响应


我们还配置了上一节中研究的提高效率功能(具有自适应死区时间和有源箝位的PS PWM)。实验发现,为了在RPT的有源到无源转换中实现适当的ZVS,有必要修改PWM序列中的死区时间。具体来说,我们修改了次级开关的导通时间点,使其发生在每次有源到无源转换间隔之前,以允许电流反向。


测试表明适应RPT的修改工作是成功的,从12 V次级输入获得了48 V初级输出。对于负载和输入电压变化,输出电压调节都很出色,相对标准差(RSTDEV)分别为0.1%和0.02%,如图10a所示。图10b和图10c分别显示了转换效率和对50%负载变化的阶跃响应。两种情况下,RPT模式下的效率水平都与FPT模式相似,在中等功率范围内的峰值效率为94%。阶跃响应参数(过冲和建立时间)在RPT模式下为(1%; 1.5 ms),而在FPT模式下为(2%; 800 μs)。我们观察到,较低的过冲,稍慢的建立时间,构成稳定的瞬态响应。这些结果证明,调整数字控制器以支持双向功率传输的设计过程是有效和成功的。


图10.RPT模式下得到的(a)输出电压调节、(b)效率和(c) 50%负载阶跃响应


结论

为在能源市场中实现安全可靠的应用,采用功率转换专用数字控制器是一种不错的备选方案。这是因为,与微控制器相比,数字控制器有助于简化功能安全认证,从而缩短系统级设计时间,更快地获取收益。这些器件通常是针对单向功率传输构建的,本文探讨了如何进行修改以支持双向操作。通过理论模型、仿真和实验研究展示了隔离式双向DC-DC转换器在基于电池的ESS中的应用。结果验证了该应用的可行性,两个方向的能量传输实现了相似的性能。






👇点击探索ADI“芯”世界

·
·


亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 54浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 111浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 155浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 53浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 65浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 55浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 79浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 58浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 47浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 55浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 107浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 118浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦