二值图像分析案例精选

OpenCV学堂 2024-01-09 12:12

点击上方↑↑↑OpenCV学堂”关注我

微信公众号:OpenCV学堂

关注获取更多计算机视觉与深度学习知识

最近一直有人向我提问很多二值图像分析相关的问题,特别选择了两个典型的轮廓分析问题。进行分析与编码实现与演示,废话不多说,先看第一个问题。

 

问题一

描述如下:

想找到工具盘中间缺少的几个点,统计出可以看到的工件数目

仔细分析图像发现,中间都毫无另外的有个白色很亮的圆圈,这个给了我两个思路

  • 可以通过霍夫变换检测圆来提取到

  • 可以通过二值图像分析来提取 + 轮廓分析来提取到这些点

得到这些轮廓点之后通过分析整个轮廓区域得到倾斜角度,进行纠偏,然后通过X与Y投影进行分割,得到每个零件的中心位置坐标,根据每一行的间隔设置阈值,从而实现缺少部分部分的标出与件数统计,确定了这样的思路以后,我就开始了写代码。代码实现是基于轮廓分析的思路,因为这个方法,用的阈值比较少,有利于算法稳定性检测。演示各部输出。二值化处理之后(形态学处理):


轮廓发现与校正角度之后


投影分析与统计结果如下:


此外基于霍夫也是可以尝试的,霍夫的二值化效果也比较好,显示如下:

感兴趣的同学可以自己继续尝试下去。

问题二

描述如下:

如何统计下图中的对象个数,原图如下

看到这个图像之后,个人觉得解决十分简单,基于最外层轮廓发现即可,无需树形结构与层次分析,集合图像形态学分析或者距离变换就可以得到,最终代码的运行结果如下:

代码

问题1的代码如下(已经添加各步骤注释了):

src = cv.imread("D:/images/zsxq/zsxq_01.jpg")
cv.imshow("input", src)

# 二值化处理
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
se = cv.getStructuringElement(cv.MORPH_RECT, (33))
dst = cv.morphologyEx(gray, cv.MORPH_GRADIENT, se)
ret, binary = cv.threshold(dst, 0255, cv.THRESH_OTSU | cv.THRESH_BINARY)

# 形态学处理
se = cv.getStructuringElement(cv.MORPH_ELLIPSE, (55))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
se = cv.getStructuringElement(cv.MORPH_ELLIPSE, (1010))
binary = cv.morphologyEx(binary, cv.MORPH_CLOSE, se)
cv.imshow("binary", binary)

# 轮廓分析
contours, hireachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
result = np.zeros_like(binary)
total = 0
for cnt in range(len(contours)):
    area = cv.contourArea(contours[cnt])
    if area < 55:
        continue
    rrt = cv.minAreaRect(contours[cnt])
    cx, cy = rrt[0]
    cv.circle(result, (np.int32(cx), np.int32(cy)), 5, (255), -1)
    total += 1

# 几何纠偏
h, w = result.shape
pts = []
for row in range(h):
    for col in range(w):
        pv = result[row, col]
        if pv == 255:
            pts.append((col, row))

pts = np.array(pts)
rrt = cv.minAreaRect(pts)
print(rrt)
M = cv.getRotationMatrix2D(((w-1)/2.0,(h-1)/2.0),rrt[2],1)
dst = cv.warpAffine(result,M,(w,h))
src = cv.warpAffine(src,M,(w,h))

# Y方向投影
tbins = y_split(dst)

# X 方向投影
print("y-step", tbins)
for i in range(0, len(tbins), 1):
    if i == 0:
        roi = dst[0:tbins[i], 0:w]
        src_roi = src[0:tbins[i], 0:w, :]
        x_projection(roi, src_roi)
        cv.imshow("roi", roi)
        cv.waitKey(0)
    if i == len(tbins)-1:
        roi = dst[tbins[i]:h-10:w]
        src_roi = src[tbins[i]:h-10:w, :]
        x_projection(roi, src_roi)
        cv.imshow("roi", roi)
        cv.waitKey(0)
    if 0 < i < (len(tbins)-1):
        roi = dst[tbins[i-1]:tbins[i] - 10:w]
        src_roi = src[tbins[i-1]:tbins[i] - 10:w,:]
        x_projection(roi, src_roi)
        cv.imshow("roi", roi)
        cv.waitKey(0)

# 显示结果
cv.imshow("result", result)
cv.imshow("dst", dst)
cv.putText(src, "numbers: " + str(total), (5050), cv.FONT_HERSHEY_SIMPLEX, 1.0, (00255), 2)
cv.imshow("detection", src)

cv.waitKey(0)
cv.destroyAllWindows()


问题2的完整代码如下:

import cv2 as cv
import numpy as np

src = cv.imread("D:/images/zsxq/zsxq_02.jpg")
cv.imshow("input", src)
src = cv.GaussianBlur(src, (33), 0)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
edge = cv.Canny(src, 50100)

se = cv.getStructuringElement(cv.MORPH_ELLIPSE, (1010))
binary = cv.morphologyEx(edge, cv.MORPH_CLOSE, se)
contours, hireachy = cv.findContours(binary, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
count = 0
for cnt in range(len(contours)):
    area = cv.contourArea(contours[cnt])
    if area < 100:
        continue
    count += 1
    rrt = cv.minAreaRect(contours[cnt])

    # rotated rectangle
    box = cv.boxPoints(rrt)
    box = np.intp(box)
    cv.drawContours(src, [box], 0, (25500), 2)

cv.imshow("binary", binary)
cv.imshow("result", src)
cv.waitKey(0)
cv.destroyAllWindows()


以上这些都来自《OpenCV4应用开发 - 入门、进阶与工程化实践》书中第六、第七、第八章相关知识点的实际应用。图书作者贾志刚 拥有多年OpenCV开发与工程化经验,全书共计16个章节,重点聚焦OpenCV开发常用模块详解与工程化开发实践,提升OpenCV应用开发能力,助力读者成为OpenCV开发者,同时包含深度学习模型训练与部署加速等知识,帮助OpenCV开发者进一步拓展技能地图,满足工业项目落地所需技能提升。购买请点链接: 
https://item.jd.com/10092255924058.html
书中全部源代码已经基于OpenCV4.8 + VS2017调试通过。购买本书请扫码(此链接已经优惠打折!


购买图书有专属QQ群

负责贴身答疑解惑


读者专属QQ群 :657875553

进群暗号:OpenCV4读者



OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 67浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 94浏览
  • 从无到有:智能手机的早期探索无线电话装置的诞生:1902 年,美国人内森・斯塔布菲尔德在肯塔基州制成了第一个无线电话装置,这是人类对 “手机” 技术最早的探索。第一部移动手机问世:1938 年,美国贝尔实验室为美国军方制成了世界上第一部 “移动” 手机。民用手机的出现:1973 年 4 月 3 日,摩托罗拉工程师马丁・库珀在纽约曼哈顿街头手持世界上第一台民用手机摩托罗拉 DynaTAC 8000X 的原型机,给竞争对手 AT&T 公司的朋友打了一个电话。这款手机重 2 磅,通话时间仅能支持半小时
    Jeffreyzhang123 2025-01-02 16:41 141浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 187浏览
  • 在科技飞速发展的今天,机器人已经逐渐深入到我们生活和工作的各个领域。从工业生产线上不知疲倦的机械臂,到探索未知环境的智能探测机器人,再到贴心陪伴的家用服务机器人,它们的身影无处不在。而在这些机器人的背后,C 语言作为一种强大且高效的编程语言,发挥着至关重要的作用。C 语言为何适合机器人编程C 语言诞生于 20 世纪 70 年代,凭借其简洁高效、可移植性强以及对硬件的直接操控能力,成为机器人编程领域的宠儿。机器人的运行环境往往对资源有着严格的限制,需要程序占用较少的内存和运行空间。C 语言具有出色
    Jeffreyzhang123 2025-01-02 16:26 129浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 157浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 75浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 102浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 69浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 68浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 103浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 99浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 165浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 66浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦