常见三相PFC拓扑结构详解


欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 106513758


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


电力电子技术与新能源小店











为了满足应用的要求,为PFC选择的拓扑结构是一个重要考虑因素,它们将决定整体的解决方案和性能。此外,并非所有拓扑结构都可以满足所有要求,就像并非所有拓扑结构都支持三电平开关或双向性。之前我们介绍过三相功率因数校正系统的优点设计三相PFC时的注意事项,本文将介绍一些常见的三相拓扑结构并讨论它们的优缺点。











Vienna整流器(三开关升压)

在深入研究Vienna整流器的技术细节和特征之前,有必要了解一下它的历史,但更重要的是,我们要就所讨论的内容达成共识。Vienna整流器是一种脉宽调制整流器,由 Johann W. Kolar于1993年发明。在Kolar发明它之前,人们使用每相单相(带或不带中性线)和负载共享来平衡相电流。如今,“Vienna”一词通常主要指三相AC/DC转换器,但有时也指DC/AC或逆变器。例如,中性点钳位 (NPC) 和T−NPC三电平拓扑结构有时被称为“Vienna”,即使作为逆变器工作时也是如此。在讨论所谓的“Vienna”转换器时,建议确定是哪一种“Vienna”。


关于“Vienna”整流器的特性,它是一种三相连接升压PFC,如图7所示。单相升压PFC由电感、开关器件和整流二极管组成。在三电平结构中,每个半波或每个母线电压(不包括中间的公共接地)都有一个“升压”整流二极管 (DxBy)。然后,有一个双向开关, 由一个全波二极管整流桥(DxPy和DxZy)和其中的单向开关 (Qx)组成。我们得到如下原理图。


图7. Vienna PFC原理图


开关Qx的额定电压为600V或650V。所有二极管的额定电压也可以为600V。这将有助于减少损耗,因为不需要额定电压为1200V的器件。另一方面,二极管损耗很重要。电流路径中始终有两个串联的高频二极管。对于这些二极管,始终要在压降和反向恢复之间进行折衷。


对于PWM,它非常简单,因为每相只有一个开关。在反向Clark和Park帕克反向变换之后,调制直接应用于开关。但是,根据输入的正弦波方向,电流路径会发生变化。根据输入电压符号和/或电流方向/流动,二极管整流桥和“升压”二极管“自动”参与电流路径。这在图8中得到了很好的说明。


图8.Vienna升压PFC电流路径

(用于存储和释放能量模式)和相电压


如前所述,由于电流分别从一相或两相流向其余两相或一相,因此上图仅画出一条支路(或一相原理图)。根据运行的扇区,可以使用上述方案导出每个相(U、V 或 W)的两种模式(相电压先将能量存储在升压电感器中,然后将能量释放到输出电容)。


这种拓扑结构的主要优点是每相使用一个开关。即使原理图看起来因所涉及的二极管数量而变得更加复杂,但它能使控制变得更加容易。该拓扑结构的成本也很低,因为开关数量非常少。该拓扑结构是单向的。


这种拓扑结构的一个主要缺点是二极管数量多。电流路径中始终有两个二极管,这会影响效率。所有驱动器都是浮地的,需要特定的浮动电源。


开关的选择可以根据功率级别,采用 超结MOSFET或 IGBT。对于更高频率的操作和/或更小的尺寸,也可以使用SiC MOSFET。对于二极管,建议使用硅STEALTH™ 2 或SiC二极管。

T−NPC升压

不同于“Vienna整流器(三开关升压)”部分介绍的原版“Vienna”,T型中性点箝位 (T−NPC) 以不同方式实现双向开关。T-NPC不是使用整流桥将单向开关转换为双向开关,而是使用背靠背开关配置,如图9所示。当开关未导通且电流与此开关的正常开关电流相比以“反向”方向流动时,也可以从体二极管导通。像IGBT这样的双极器件就是这种情况。使用MOSFET等单极器件,如果需要,可以打开开关以减少导通损耗。

图9.T−NPC升压PFC原理图


开关Qxy的额定电压为600V或650V。二极管DxBy额定电压为1200V。元件数量比原来的Vienna PFC少得多。导通损耗要低得多,因为一次只有一个二极管串联在电流回路中。但是,由于“升压”二极管是1200V器件,开关损耗略大于600V二极管。由于二极管少得多,因此很难预测哪种拓扑结构具有最佳效率。实际上,由于二极管数量较少,这种T−NPC拓扑结构具有更好的效率。图10突出显示了其中一相的电流路径。


图10.T−NPC升压PFC电流路径

(用于存储和释放能量模式)和相电压


同样的反馈方法可以在这里与Clark和Park帕克直接和反向变换使用,以获得PWM信号。


由于两个背靠背开关共享相同的发射极或源极引脚节点,因此驱动器可以直接在控制环路之外使用相同的PWM信号驱动两个背靠背开关。否则,根据正弦波符号(正或负),需要驱动相应的开关。在这种情况下,有6个开关要驱动。这使得驱动正确开关的PWM解码方案稍微复杂一些。


在这两种情况下,驱动器都需要像原版Vienna那样是浮地的。


这种拓扑结构的一个优点是有源元件要少得多。对于原版Vienna,每相有6个有源元件。如果我们将体二极管视为开关的一部分,则T−NPC中每相只有4个有源元件。另一个优势是较低的导通损耗,使这种拓扑结构更适合更高的功率。


T−NPC的主要缺点是需要1200V二极管。这可能会抵消较低的导通损耗带来的效率增益,并可能影响总体成本。


T−NPC结构也用作逆变器。在这种情况下,“升压”二极管被开关取代,如图11所示。与PFC相比,输出方向是相反的。这样全部开关器件都是可双向工作的T-NPC拓扑就可以做到双向功率传输,由控制回路定义传输方向。


图11.双向T−NPC升压PFC原理图


NPC和A−NPC升压

双向开关的实现方案再次发生变化。NPC拓扑结构使用两个开关,分别用于每个(正或负)正弦波半周期。二极管桥现在是一个混合桥,结合了二极管和开关管,如图12所示。两个前端二极管用作一种“变速箱”,用于切换正相或负相周期。然后,连接到输出端的二极管和接地的开关管用作升压开关单元。这是显而易见的,因为此处描述的所有拓扑结构(Vienna、T-NPC和NPC)都在升压模式下运行。

图12.NPC升压PFC原理图


开关Qxy的额定电压为600V或650V。所有二极管(DxBy和DxPy)的额定电压也可以为600V或650V。这将有助于减少损耗,因为不需要额定电压为1200V的器件。另一方面,在电流路径中总是有两个组件 {即1个二极管与(1个二极管或1个开关)} 串联。这种NPC拓扑结构比T-NPC具有更高的导通损耗。


同样的反馈方法可以在这里与Clark和Park帕克直接和反向变换使用,以获得PWM信号。


这里的3个开关是浮地的,需要浮地的栅极驱动。其他3个开关接地,它们不需要浮地驱动器。这可以视为一种优势,但这种优势可能被两个原因影响。首先,根据功率水平,可能需要开尔文引脚到开关节点来驱动开关并提高效率。其次,为避免电流谐波,要求正负正弦波相位对称运行。这意味着浮动和接地栅极驱动信号应具有相同的延迟。因此,出于这个原因,浮动开关和接地开关通常使用相同的驱动原理图。


根据正弦波极性(正或负),需要驱动相应的开关。这使得驱动正确开关的PWM解码方案比三开关Vienna稍微复杂一些。此拓扑结构的电流路径如图13所示。


图13.Vienna升压PFC电流路径

(用于存储和释放能量模式)和相电压


由于没有1200V二极管,这种拓扑结构在损耗方面具有明显优势,与原版 Vienna 相比,组件更少。驱动器配对和延迟匹配很关键,可以看作是一个缺点。


在这种结构中,用开关代替二极管也使拓扑结构成为双向的,如图14所示。这种结构称为A−NPC(有源中性点钳位)。


图14.双向NPC升压PFC原理图,

也称为A-NPC升压PFC


半桥PFC升压

6-switch、6-Pack, 或称三相半桥逆变被广泛用于驱动电机,尤其是 BLDC 电机。当电机制动时,能量从电机的旋转中拉出并存储在总线电容器中。逆变器以反向模式工作,为电机轴提供动力。它与PFC的功率流相同。电源从三相电源流向直流母线。在这种断路运行模式下,电机电感器用作“升压”电感器。这种电机制动模式与PFC模式的区别在于控制回路给出的控制策略。因此,6-switch PFC与反向模式下的电机逆变器原理图相同(其中负载是源,反之亦然)。如图15所示,它是最简单的拓扑结构。所有开关 (Qxy) 都是1200V器件。在任何时候,功率流中每相只有一个开关。这是一种效率上的优势,可以弥补额定为1200V的器件的不足。它也是一个 两电平拓扑结构。所以,调制是直接的。如今,一些额定电压为900V的器件也可用于此拓扑结构。那些 900 V 器件的性能优于1200V器件。这有助于减少650V以上的开关器件的缺点。

图15.双向三相半桥两电平升压PFC


由于我们有3个接地的半桥,使用半桥驱动器构建驱动器要容易得多,并且可以使用自举等技术来创建浮动电源。这使用众所周知且广泛使用(在电机控制应用中)的技术简化了原理图。为了更好地理解,图16显示了返回和正向路径。由于没有中间点(因为它是两电平拓扑结构),电流路径在这种情况下不是很明显。


图16.用于存储和释放(升压)能量模式

和相电压的三相半桥升压 PFC 电流路径


可提供用于电机驱动的功率模块,也可用于超高功率应用的 PFC 应用。此拓扑结构本质上是完全双向的。如本文开头所述,主要缺点主要是与两电平拓扑结构的客观优缺点有关。


并联单相带中性线

相比于使用具有复杂控制(通常需要数字控制器)的专用三相拓扑结构,一种更简单的替代方法是使用三个具有中性线连接的单相PFC,如图17所示。在此配置中,如果系统不平衡,中性线是必不可少的,即使三个单相PFC连接到负载分配控制以在三相之间平均分配功率也是如此。


图17.三相PFC使用3个单相PFC并联


由于单相PFC非常流行,以这种方式使用似乎更容易。有人认为三个独立转换器的优势体现在发生故障的时候:即使一个失效,仍有两个可用。如果故障不扰乱电网,那确实如此。例如,如果输入级出现短路故障,并且这种短路会在保险丝熔断之前以某种方式传输到电网。如果它扰乱了电网并且中性点在此故障期间发生了变化,则可以向剩余的PFC施加完整的相间电压。为避免失效,剩余的PFC将不得不维持此瞬态电压,这会增加PFC损耗、尺寸和成本。


这种结构的优点是设计起来简单得多,因为单相PFC被广泛使用。但是,由于需要使用中性线,使得配电网络更加昂贵并且不是最优的。此外,单相PFC无法处理几千瓦以上的功率。若要处理更高的功率,需要并联。


三相拓扑结构总结

表1总结了每种拓扑结构在前面讨论的设计标准方面的优缺点。


表 1.本文中讨论的通用拓扑结构的优缺点总结


结论

三相PFC系统很复杂,有多种可能的设计来满足相同的电气要求,需要考虑的范围很广,需要权衡取舍。要为每个应用找到最佳解决方案并非易事,需要系统层面和组件层面的系统专业知识。

文章首尾冠名广告正式招商,功率器件:IGBT,MOS,SiC,GaN,磁性器件,电源芯片,DSP,MCU,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

电力电子技术与新能源通讯录:

Please clik the advertisement and exit

重点

如何下载《电力电子技术与新能源板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!


推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

High_Frequency_Transformers_for_HighPower_Converters_Materials

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion

Designing Compensators for Control of Switching Power Supplies

100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET

华为-单板热设计培训教材


看完有收获?请分享给更多人


公告:

电力电子技术与新能源微信群,欢迎加小编微信号:(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

在这里有电力电子技术:光伏并网逆变器(PV建模,MPPT,并网控制,LCL滤波,孤岛效应),光伏离网,光伏储能,风电变流器(双馈、直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC(LLC,移相全桥,DAB),储能(锂电池、超级电容),低电压穿越(LVRT),高电压穿越,虚拟同步发电机,多智能体,电解水,燃料电池,能量管理系统(直流微网、交流微网)以及APF,SVG ,DVR,UPQC等谐波治理和无功补偿装置等。
PSCAD/MATLABsimulink/Saber/PSPICE/PSIM——软件仿真+DSP+(TI)TMS320F2812,F28335,F28377,(Microchip)dsPIC30F3011,FPGA,ARM,STM32F334——硬件实物。
欢迎技术人员加入,多多交流,共同进步!


更多精彩点下方阅读原文

      点亮在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 100浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 53浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 390浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦