基于高温退火非极性面氮化铝单晶薄膜实现高性能声学谐振器

MEMS 2024-01-08 00:01

氮化铝(AlN)以其超宽禁带宽度(~6.2 eV)和直接带隙结构,与氧化镓、氮化硼、金刚石等半导体材料被并称为超宽禁带半导体,与氮化镓、碳化硅等第三代半导体材料相比具有更优异的耐高压高温、抗辐照性能。此外,氮化铝沿c轴的高频压电性能与高声速特征使其成为制备高频声学谐振器的理想材料,已被广泛应用于高频通讯的射频前端模组。然而,氮化铝材料铝-氮键键能强,制备温度高,高质量单晶制备条件极其苛刻,这些问题严重限制了氮化铝单晶材料的发展及应用,因此高质量大尺寸氮化铝单晶材料的制备与应用是目前新型半导体材料发展的重要方向。


针对上述瓶颈问题,国内外诸多单位,例如日本三重大学、德国柏林工业大学、北京大学、松山湖材料实验室、中科院半导体研究所、长春光机所、杭州奥趋光电等机构相继投入财力、物力与人力对氮化铝单晶材料进行深入研究,有效推动了氮化铝单晶材料在紫外发光领域的应用。而氮化铝材料另一重要应用领域—高频微机电系统(MEMS),依然鲜有氮化铝单晶材料的应用案例。氮化铝c轴方向具有优异的高频压电特性与高声速值,因此传统氮化铝体声波谐振器往往需要施加与压电轴方向重合的电场,因此在工艺上普遍选择金属电极/AlN薄膜/金属电极的三明治结构(图1 a与b)。但由于技术限制,尚无法在常用金属电极薄膜上生长单晶氮化铝。由此来看,传统体声波谐振器一方面很难引入氮化铝单晶材料,发挥单晶性能优势;另一方面体声波谐振器具有相对复杂的器件结构,表面声波谐振器虽然结构简单,仅具有平面叉指电极,但却由于传统c面氮化铝在水平方面的压电系数较小,且平面叉指电极形成的厚度方向电场较弱,无法充分利用c轴的优异压电性能。

应对上述瓶颈问题,由北京大学、上海微系统与信息技术研究所、松山湖材料实验室组成的联合研究团队,提出了基于高温热退火技术制备a面氮化铝单晶薄膜实现高性能表面声学谐振腔的解决方案(图1c和d),充分结合了氮化铝材料c轴优异高频压电特性与表面声波谐振器结构简单的双重优点。本方案是基于高质量非极性面单晶氮化铝薄膜实现的MEMS声学谐振器且器件性能优异,相关成果以“High speed surface acoustic wave and laterally excited bulk wave resonator based on single-crystal non-polar AlN film”为题,于2023年12月19日在Appl. Phys. Lett. [Appl. Phys. Lett. 123, 252105 (2023);]上在线发表,并以“High-Performance SAW Resonators Based on Single-crystalline a-Plane AlN Thin Films on Sapphire Substrates”为题收录于声学领域顶级会议IEEE International Ultrasonics Symposium [03-08 Sep. 2023, Montreal, QC, Canada]。

图1 (a) 传统c面氮化铝薄膜晶体结构; (b)基于c面氮化铝薄膜的体声波谐振器结构; (c) a面氮化铝单晶薄膜晶体结构; (d) 基于a面氮化铝薄膜的的表面声波谐振器结构。(其中箭头P指向为极化方向)

a面氮化铝单晶薄膜

图2 (a) 高温退火后的a面氮化铝薄膜的原子力显微镜形貌图;沿氮化铝 (b) 和 (c) 方向的X射线衍射倒空间结果; (d) 蓝宝石(0006)衍射晶面和氮化铝衍射晶面的X射线衍射Φ扫描; (e) r面蓝宝石衬底上a面氮化铝的结构示意图。

研究团队利用物理气相沉积结合1700℃超高温退火技术在r面蓝宝石衬底上实现了a面氮化铝单晶薄膜,根据氮化铝薄膜的方向倒空间X射线衍射图谱可知,氮化铝衍射晶面均具有较强的衍射信号,同时其与蓝宝石衍射斑具有相同的qx/qy,表明氮化铝和蓝宝石晶向均平行于薄膜法线方向。图2(d)中采用Φ扫描的方式分别确定了氮化铝和蓝宝石具有面内衍射分量的晶面,其中氮化铝晶向在薄膜面内的分量与蓝宝石晶向在薄膜面内的分量相互垂直。最终的氮化铝和蓝宝石之间的外延关系如图2(e)所示,所得氮化铝薄膜为c轴在薄膜面内的a面氮化铝单晶薄膜。

高频声学特性

图3 (a) 基于a面氮化铝单晶薄膜的高性能谐振器结构示意图;(b) 室温条件下谐振器的导纳特性曲线 (θ = 0°) ; (c) 谐振器品质因子Bode-Qmax随θ变化规律;(d) 谐振器品质因子Bode-Qmax随温度变化测试曲线; (e) θ=0°时,谐振器中激发的瑞利波和横向体波的模拟结果示意图; (f) 基于a面氮化铝单晶薄膜谐振器激发横向体波的导纳曲线(θ = 0°)。

基于高温退火a面氮化铝单晶薄膜的谐振器结构示意图如图3a所示。为了证明施加电场方向与c轴之间相对角度的重要性,我们制备了一组具有不同夹角θ的谐振器,相邻谐振器之间的θ以5°为步进渐变。当θ=0°时,施加电场方向与氮化铝c轴方向平行,瑞利表面波的fr和fa 分别为2.382和2.387 GHz,Kt2=0.587%,而品质因子值高达2458,经优化后可提升至3731。此外,即使是在185°C条件下,谐振器的品质因子仍然高达1847,证明了其优异的高温工作能力。随着θ逐渐增大,瑞利共振与品质因子逐渐减弱。除瑞利表面波(Rayleigh SAW),谐振器同时在4.00 GHz频段激发出高频横向体波(LBAW),如图3f所示,当θ=0°时,LBAW的 fr和fa的频率分别为4.007和4.064 GHz,计算其对应的Kt2值为3.33%,计算得到声速高达9614 m/s,该工作是氮化铝体系中首次仅通过平面叉指电极激发高速横向体波。该结果证实了非极性面氮化铝单晶薄膜在高频声学谐振器领域具有巨大优势。特别值得一提的是,实现上述谐振器优异性能的单晶氮化铝薄膜表面粗糙度高达~7 nm,证明了此项技术的鲁棒性与产业前景。这一研究工作为氮化铝表面声波谐振器的发展开辟了新的思路,在一定程度上解决了氮化铝在表面声波谐振器中由于低d31所面临的瓶颈问题,有望推动高温退火氮化铝单晶薄膜在射频器件领域的发展与应用。


该研究工作由北京大学、上海微系统与信息技术研究所、松山湖材料实验室等单位共同完成。北京大学博士生卢同心、上海微系统与信息技术研究所博士生房晓丽为共同第一作者,袁冶副研究员、张师斌副研究员、欧欣研究员和王新强教授为共同通讯作者,同时该工作得到了南京航空航天大学吉彦达副教授、广东中民工业技术创新研究院杨安丽博士的支持。该研究工作得到了科技部国家重点研发计划、国家自然科学基金、北京市卓越青年科学家项目、中国科协青年精英科学家资助计划等项目的支持。

延伸阅读:
《封装天线(AiP)专利全景分析-2021版》
《射频(RF)氮化镓技术及厂商专利全景分析-2020版》
《氮化镓(GaN)电子专利全景分析-2023版》
《射频(RF)声波滤波器专利全景分析-2019版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 47浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 74浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 70浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 66浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦