如何快速解决传导型EMI问题?

硬件笔记本 2024-01-06 08:58

点击上方名片关注了解更多


摘要

EMI抑制方案有许多组合,包括滤波器组合、变压器绕线安排,甚至PCB布局。本文提供一种结合共模电感与差模电感的磁混成,称之为混成式共模电感器。不仅保留共模电感的高阻抗特性,同时利用其很高漏电感当成差模电感用。不仅可以缩小体积节省滤波器成本,更提供了工程师快速解决传导型EMI 问题的方法。


混成式共模电感的原理与功能

在常规单级EMI 滤波器电路中,如图一,有共模噪声滤波器 (LCM、CY1与CY2) 与差模噪声滤波器 (LDM、CX1与CX2) 分别形成”LC滤波器”衰减共模与差模噪声。共模电感通常以高导磁锰锌 (Mn-Zn) 铁氧体 (Ferrite) 制成,电感值可达1~50mH。共模电感器,如图二,由于绕线极性安排,虽然两组线圈分别流过负载电流,但铁芯内部磁力线互相抵消,一般不存在铁芯饱和的问题。常用的铁芯有环型 (Toroidal)、UU型 (UU-9.8、UU-10.5等)、ET型与UT型,如图三。为了获得足够的共模电感值,要尽量让两组线圈的耦合达到最好,所以多采用施工成本较高的环型或一体成型的ET与UT 铁芯。

图一、常规EMI滤波器结构


图二、共模电感器


图三、共模滤波器(a)环型(b)ET型(c)UU型(d)UT型


从共模电感的工作原理与等效电路来看,如图四所示,双绕组的共模电感虽然有很好的耦合,但是还是存在漏电感,漏电感就是由漏磁通造成。这个漏电感在等效上串联在电路上,功能上与差模电感无异。所以可以说,共模电感器的漏电感可以利用来做为差模滤波器。然而如图三所示的共模电感器,由于机械结构的关系,其漏电感都很小,约莫在数mH到100mH。如果要得到更大的漏电感,只有增加匝数一途,如此一来,线径变细,电流耐受降低。要改善只有增加铁芯尺寸,当然也增加了滤波器的体积与成本。许多要求极高共模电感的应用,其实不在滤除共模噪声,而是要得到较大的漏电感当差模滤波器用,只是许多工程师不甚清楚罢了。

图四、共模电感器的等效模型


为了增加共模电感的漏电感,特殊的铁芯结构与绕线方法称为混成式共模电感器 (Integrated Common-mode Choke) 或者称混成共模电感器 (Hybrid Common-mode Choke),如图五所示。这样的结构,不仅可以保留共模电感量以充分滤除共模噪声,而且其漏电感形成的差模电感可以高达数百mH,配合适当的X电容,可以有效的滤除中低频段 (150kHz~3MHz) 的差模

信号。实验证明混成式共模电感器不仅具有很好的滤波特性,低成本与小体积更是最大的优点。

图五、立式与卧式混成式共模电感器



主要的电气参数

混成式共模电感器除保留了常规的共模电感器的规格外,还兼具差模电感的特性。一般除了用共模与差模电感量标示外,还要以以下参数来规范。

(1)共模阻抗 (Common-mode Impedance, ZCM) : 相较于电源阻抗稳定网络 (Line Impedance Stabilization Network, LISN)的高频等效电阻 (共模为25W),滤波用的共模阻抗越大越好。除了铁芯材质外,绕线的方法(槽数)更影响高频阻抗的高低。图六为共模阻抗的量测法,图七为ASU-1200系列共模阻抗特性图。由于绕线的层间杂散电容 (Stray Capacitance, CS) 存在,高频时将变为电容性;CS越小越好。

图六、共模阻抗量测


图七、ASU-1200系列共模阻抗特性图


(2)共模电感 (Common-mode Inductance, LCM) : 传统上,习惯以外加测试电压 (VOSC)与频率来规范共模电感。依铁芯材料特色,共模电感以VOSC = 1Vac @100kHz 量测较为稳定。

(3)差模阻抗 (Differential-mode Impedance, ZDM) : 同样的,量测等效差模阻抗的方法如图八所示,用差模阻抗特性图 (如图九)来定义差模滤波的效能;相较于LISN 的等效电阻100W,差模阻抗也是越大越好。当然高频时一样会变成电容性,但只要阻抗够大,一样有滤波的效果。

图八、差模阻抗量测


图九、ASU-1200系列差模阻抗特性图


(4)差模电感 (Differential-mode Inductance, LDM) : 差模电感一样可以VOSC = 1Vac @100kHz 来规范。在实用上,混成式差模电感量必须在100mH 以上,配合X电容,才能有效的滤除差模噪声。

(5)差模饱和电流 (Isat) : 如前所述,因为等效差模电感必须流过负载电流,在负载电流的峰值下,差模电感不能饱和,否则其滤除噪声的能力将降低。图十为一般桥式整流滤波电路的输入电流波形。必须确保在最大电流峰值下,差模电感量没有因饱和而下降。传统上,以电感值衰减20% (相对于没有直流偏置) 为其差模饱和电流。

(a)

(b)

图十、(a) 全桥滤波电路 (b) 输入电流波形


(6)有效承受电流(Irms) : 等效上就是规范线径粗细。虽然如图十的输入电流波形,但其有效值并不高,一般可以两倍的输出功率除以最低输入电压估计。例如全电压范围25W 的电源适配器,输入电流的有效值约为 2*25W/90Vac = 0.55A。

表一为ASU-1200 系列的电气参数表


LCM(mH)

±20%

LDM(mH)

±10%

Isat(A)

Irms(A)

ASU-1201

4.0

143

3.2

1.00

ASU-1202

6.0

220

2.9

0.80

ASU-1203

9.0

310

2.4

0.75

ASU-1204

12.0

410

2.2

0.75

ASU-1205

16.0

530

1.9

0.60

ASU-1206

20.0

670

1.8

0.55



应用电路

混成式共模电感器,简单说就是一个传统共模电感与一个(或两个)差模电感的混成。在应用上,EMI工程师必须选定需要的共模电感、差模电感以及相关的差模饱和电流与承受电流。ASU-1200 系列混成式共模电感适合应用在25W到50W的Flyback 电路或120W以下PFC 电路。图十一为两种应用混成式共模电感器的Flyback 电路。

(a)


(b)

图十一、两种应用混成式共模电感器的Flyback 电路(a) 常规位置搭配X电容 (b) 置于桥整后与电解电容形成P型滤波器


图十二为应用在临界导通模式 (Boundary Conduction Mode) 主动功因改善 (PFC) 电路的滤波器。

图十二、应用于PFC电路的混成共模电感器


图十三到图十五为应用ASU-1203混成式共模电感器在一个24W (12V/2A) 的离线式Flyback 电源中EMI 的表现。明显地可以看出这种共模电感不只有效的衰减共模噪声,同时其差模电感也大量的衰减差模噪声。整体而言,装有ASU-1203 的EMI 表现,在中低频段约有30dB的衰减。

图十三、共模噪声衰减 (蓝色曲线为装有ASU-1203 的共模噪声量测图)


图十四、总噪声衰减 (蓝色曲线为装有ASU-1203 的总噪声量测图)


图十五、差模噪声衰减 (蓝色曲线为装有ASU-1203 的差模噪声量测图)

硬件工程师及从业者都在关注我们

       
       

声明:


声明:文章来源头条鹏城电路。本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。
投稿/招聘/推广/宣传 请加微信:woniu26a

推荐阅读

  • 电路设计-电路分析

  • EMC相关文章

  • 电子元器件

后台回复“加群,管理员拉你加入同行技术交流群。

硬件笔记本 一点一滴,厚积薄发。
评论 (0)
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 75浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 189浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 193浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 72浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 61浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 57浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 301浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 187浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 137浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 340浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦