TC3xx芯片GTM模块-TOM详解

原创 汽车电子嵌入式 2024-01-04 07:51

前言

GTM模块功能非常的强大也就会非常的复杂,TC3xx的MCAL使用GTM作为其他AUTOSAR标准模块的输入时钟,如ICU和PWM模块都使用GTM作为时钟源。所以,学习TC3xx的MCAL,GTM必须熟悉。我们在介绍GTM模块的时候仅站在工程开发者的角度去介绍需要用户关注和配置的关键地方,且仅重点介绍GTM对于PWM信号的输入输出功能,对于原理其其他复杂功能仅粗略介绍,详细的原理介绍请参考芯片手册,复杂的GTM功能作者也没有实践经验。本文为TOM详解


参考文章:

TC3xx芯片Clock System功能详解-时钟源OSC

TC3xx芯片Clock System功能详解-锁相环PLL

TC3xx芯片Clock System功能详解-时钟分配CCU

AUTOSAR架构下TC3xx平台的MCAL时钟系统配置实践

TC3xx芯片GTM模块详解-GTM功能概述及GTM输入时钟介绍

TC3xx芯片GTM模块-CMU,CCM,TBU详解

缩略词

简写

全称

GTM

General Time Module

PWM

Pulse Width Modulation

CMU

Clock Management Unit

CCM

Cluster Configuration Module

TBU

Time Base Unit

TOM

Timer Output Module

CCU

Counter Compare Unit


注:本文章引用了一些第三方工具和文档,若有侵权,请联系作者删除!

正文

6. TOM

6.1 TOM功能

TOM主要用来输出简单的PWM信号。此外,在 Tom 输出 TOM[I]_CH15_OUT 时,可以生成脉冲计数调制信号。


6.2 TOM硬件资源

TC377为例。TC3773TOM硬件单元,每个TOM Unit16Channel(Channel0 – Channel15),也就是总共有3 * 16 = 48 Channel. 每个TOM Unit16Channel分为两组(Group 0Group 1),Group 0Channel0 – Channel7, Group 1Channel8 – Channel15.

 


 

6.3 TOM中断

 

 


ChannelxChannelx+1共用一个IRQ.


For Example:

GTMTOM1Channel7配置中断,中断地址为:0xE10 + 1*0x20 + 3*4 == 0xE3C,在Os中配置IRQ的时候需要配置。


6.4 TOM时钟

 


由上图可知CMU.FXU的输入时钟选用GTM_GLOBAL_CLOCK,也就是fCLS0_CLK,也就是200MHz.

 


 

CMU.FXU的输出时钟为:

CMU_FXCLK0 = 200MHz / 1 = 200 MHz

CMU_FXCLK1 = 200MHz / 16 = 12.5 MHz

CMU_FXCLK2 = 200MHz / 256 = 781.25KHz

CMU_FXCLK3 = 200MHz / 4096 = 48.828125KHz

CMU_FXCLK4 = 200MHz / 655336 = 3051.7578Hz

 

TOM每个通道的时钟源由TOMi_CHx_CTRL. CLK_SRC_SR配置

 

问题EBMCU模块的GtmGlobalConfiguration上没有配置使用哪个CMU_FXCLKx


EBMCU模块的GtmGlobalConfiguration值配置Gtm的一切Global配置项,具体的PWM输出也就是TOM Channel的时钟配置,TIM Channel的输入也就是TIM Channel的时钟配置,需要在对应的PWMICU AUTOSAR标准模块配置。


6.5 TOM内部原理

6.5.1 TOM通道使能

 


如上图所示,主要控制的就是TOM模块的使能和更新,也就是上图模块的三个输出,由TOM[x]_TGC[y]_FUPD_CTRL, TOM[x]_TGC[y]_OUTEN_CTRL, TOM[x]_TGC[y]_ ENDIS_CTRL三个寄存器体现:


TOM[x]_TGC[y]_FUPD_CTRL:强制更新CM1(PWM占空比), CM0(PWM周期), CLK_SRC(时钟源信号),以及复位CN0(时钟计数寄存器).

 

 

TOM[x]_TGC[y]_OUTEN_CTRL:控制ChannelEnable/Disable.

 


TOM[x]_TGC[y]_ ENDIS_CTRL:控制OutputEnable/Disable.

 


如果我们直接配置TOM[x]_TGC[y]_FUPD_CTRL, TOM[x]_TGC[y]_OUTEN_CTRL, TOM[x]_TGC[y]_ ENDIS_CTRL三个寄存器,那它们既是输入也是输出,作为输入也就是我们配置这三个寄存器,作为输出就是这三个寄存器控制TOM通道的使能和更新。


除了直接配置TOM[x]_TGC[y]_FUPD_CTRL, TOM[x]_TGC[y]_OUTEN_CTRL, TOM[x]_TGC[y]_ ENDIS_CTRL三个寄存器外,我们还可以通过以下三种Global方式来控制TOM通道的使能和更新,这样TOM[x]_TGC[y]_FUPD_CTRL, TOM[x]_TGC[y]_OUTEN_CTRL, TOM[x]_TGC[y]_ ENDIS_CTRL这三个寄存器仅仅作为输出:


方式一Host CPU触发方式

 


TOMi(i=0-5)_TGCx(x=0-1)_GLB_CTRL. HOST_TRIG: Enable/Disable所有通道的ChannelOutput.


TOMi(i=0-5)_TGCx(x=0-1)_GLB_CTRL. RST_CHx: Reset CN0 寄存器(时钟计数)。


TOMi(i=0-5)_TGCx(x=0-1)_GLB_CTRL. UPEN_CTRLx: 强制更新CM1(占空比), CM0PWM周期)和CLK_SRC寄存器(时钟源)。


方式二TBU时间戳触发方式

 


TOMi_TGCx_ACT_TB((i=0-5),x=0-1).ACT_TB: 配置Compare的值。


TOMi_TGCx_ACT_TB((i=0-5),x=0-1).TB_TRIG: Timeout发生后自动置为,请求Enable所有TOM通道。


TOMi_TGCx_ACT_TB((i=0-5),x=0-1).TBU_SEL: 选择需要CompareTBU时基。


方式三:其他TOM通道信号触发方式

 

 

TOM[i]_TGC[y]_INT_TRIG是一个掩码寄存器。也就是说,其他8TOM的输出信号作为TRIG_[X]本身都可以Enable Channel的,通过配置TOM[i]_TGC[y]_INT_TRIG.INT_TRIGx可以Mask掉哪些通道有Enable的功能。


问题TOM[i]_TGC[y]_ENDIS_CTRLTOM[i]_TGC[y]_ENDIS_STAT寄存器的layout和位域信号完全一样,功能上有啥区别了?


Enable/Disable一个TOM通道,TOM[i]_TGC[y]_ENDIS_CTRLTOM[i]_TGC[y]_ENDIS_STAT寄存器必须都被Used,寄存器 TOM[I]_TGC[y]_ENDIS_STAT 直接控制信号 ENDIS 可以对该寄存器进行写访问。寄存器 TOM[I]_TGC[y]_ENDIS_CTRL 是一个阴影寄存器(SR, Shadow Register),如果三个触发条件之一匹配,它将覆盖寄存器 TOM[I]_TGC[y]_ENDIS_STAT 的值。


6.5.2 TOM通道输出

TOM[i]_CH[y]_CN0保存了输入时钟CMU_FXCLKx的计数值(Counter)。

 


TOM[i]_CH[y]_CM0保存了TOM通道输出的周期数(Period, 由用户配置PWM的周期)。

 


TOM[i]_CH[y]_CM1保存了TOM通道输出的占空比(Duty Cycle, 由用户配置PWM的占空比)。

 



问题:以上三个寄存器里面的具体值代表什么物理意义了?比如三个寄存器值是100400200


:以上三个寄存器保存的是基于通道时钟的Ticks数,比如我们使用的CMU_FXCLKx200MHz,则一个tick的时间为1/200(us) = 5ms,那么:

TOM[i]_CH[y]_CN0 = 100 –>当前计数值为100ticks,也就是500ms.

TOM[i]_CH[y]_CM0= 400 -> Period400Ticks,也就是2000ms,

TOM[i]_CH[y]_CM1=200 ->Duty Cycle200Ticks,也就是1000ms,也就是占空比为50%

 


TOM[i]_CH[y]_CN0寄存器的清零由TOM[i]_CH[x]_CTRL寄存器的RST_CCU0位域信号。


两种清零方式:


方式一CN0的计数值等于CM0是自动清零。


方式二:由上衣一个TOM通道TRIG_[x-1]或者外部捕获信号TIM_EXT_CAPTURE(x)清零。

 


CN0寄存器的值大于CM0寄存器值的时候,触发TRIG_CC0信号;当CN0寄存器的值大于CM1寄存器值的时候,触发TRIG_CC1信号。也就是计数值大于PWM周期值和PWM占空比值都有内部信号产生,这样能触发对应的PWM脉冲输出。


如果配置CN0寄存器的配置为它自己CCU0清零(RST_CCU0 = 0CN0 >= CM0 -1),那么以下说明是有效的:


. CN0的变化规律为0 -> CM0 – 1 -> 0 -> …


. 如果CN0计数器达到CN0 > CM1,则一个!SL的边沿输出信号产生(比如SL配置为低电平1!SL则为低电平0)。


. 如果CM0 = 0或者CM0=1,则CN0的值永远为0


. 如果CM1=0,则TOM通道的输出(PWM输出)的占空比永远为0%(占空比 = CM1 / CM0),电平状态为!SLSL配置为1,则占空比由SL也就是高电平1来计算,输出!SL也就是低电平0)。


如果CM1 >= CM0CM0 > 1,则输出为SLSL配置为1,则占空比由SL也就是高电平1来计算,输出SL也就是高电平1),占空比为100%

 


如果配置CN0寄存器的配置为其他TOM Channel清零或者TIM模块的外部捕获信号清零(RST_CCU0 = 1),那么以下说明是有效的:




TOM Channel的初始电平状态由SL的反向状态确定。


6.5.3 TOM占空比,周期,时钟频率的更新机制

CM0寄存器保存PWM输出的周期计数值,SR0CM0Shadow Register.


CM1寄存器保存PWM输出的频率计数值,SR1CM1Shadow Register.


CLK_SRC确定PWM输出使用的时钟频率,TOM[i]_CH[x]_CTRL寄存器的CLK_SRC_SR位域信号为CLK_SRCShadow Register.


问题:怎么理解Shadow Register?


Shadow Register保存了下一次寄存器需要更新的值。比如TOM通道的PWM正在以CM0的周期,CM1的占空比,以及CLK_SRC的时钟正在对外输出,我们需要Update PWM输出的参数,那么我们可以先更CM0CM1CLK_SRCShadow Register,也就是先更新SR0SR1CLK_SRC_SR,这样在某个确定时刻统一把Shadow Register中内容更新到寄存器中。


问题:在哪个时间点把SR寄存器的内容更新到CM0,CM1CLK_SR寄存器?


:在CN0寄存器的值被Reset的时刻。


通过执行以下步骤,可以获得Duty CyclePeriod和计数器 CN0 时钟频率的同步更新,该更新将与新周期的开始同步生效:


第一步

通过将寄存器 TOM[I]_TGC[y]_GLB_CTRL 的通道特定配置位 UPEN_CTRL[z] 设置为“ 0 ”,禁用使用相应阴影寄存器内容更新操作寄存器。

 


第二步

SR0SR1CLK_SRC_SR寄存器中写入期望的更新值。


第三步

通过将寄存器 TOM[I]_TGC[y]_GLB_CTRL 的通道特定配置位 UPEN_CTRL[z] 设置为“ 1 ”,启用操作寄存器的更新。


注意:往SR寄存器中写入新的值,只会在Reset CN0的时候更新到CM0CM1CLK_SR,只有在UPEN_CTRL[z] == 1的前提下才能在下一个新的周期完成实际输出更新。也就是说,往SR寄存器写入新的值一定是同步更新的。


6.5.4 TOM同步更占空比和异步更新占空比

只需将所需的新值写入 SR1,而无需事先禁用更新机制,即可实现仅占空比的同步更新 (如上一章所述)新的占空比下一个周期开始体现

 


如果想独立于新Period (异步) 的开始执行占空比的更新,则所需的新值可以直接写入寄存器 CM1。在这种情况下,建议额外禁用整个同步更新机制 (即,在寄存器 TOM[i]_TGX[y]_GLB_CTRL中清除对应通道 [x] 的位 UPEN_CTRL[z] ,或者在写入 CM1 之前更新 SR1 的值与 CM1 相同。



 

6.5.5 计数模式

6.5.5.1 Continuous Counting Up Mode

在连续模式下, Tom 通道通过在寄存器 TOM[I]_TGC[y]_ENDIS_STAT 中设置相应的位来启用计数器寄存器 CN0 后,开始递增计数器寄存器 CN0


生成的输出信号的电平状态(高电平 or 低电平)可以使用通道配置寄存器 TOM[I]_CH[x]_CTRL 的配置位 SL 进行配置。


如果计数器 CN0 CM0 重置为零,则期间的第一个边缘将在 TOM[I]_CH[x]_OUT 处生成。


如果 CN0 达到 CM1 ,则会生成周期的第二个边缘。


每次计数器 CN0 达到 CM0 的值时,它都会重置为零,并继续递增。

 


注意:这个模式应该是PWM输出的最常用模式,以下的几种模式应该是用于特殊的PWM输出常见,不在详述,具体可以去参考芯片手册。

6.5.5.2 Continuous Counting Up-Down Mode

 


6.5.5.3 One-shot Counting Up Mode

 


6.5.5.4 One-shot Counting Up-Down Mode



关注本公众号了解GTM后续更精彩内容!


End

「汽车电子嵌入式在CSDN上同步推出AUTOSAR精进之路专栏,本专栏每个模块完全按实际项目中开发及维护过程来详细介绍。模块核心概念介绍、实际需求描述、实际工程配置、特殊需求介绍及背后原理、实际工程使用经验总结。目的是让读者看完每一个章节后能理解原理后根据需求完成一个模块的配置或者解决一个问题。」


点击文章最后左下角的阅读原文可以获取更多信息


或者复制如下链接到浏览器获取更多信息

https://blog.csdn.net/qq_36056498/article/details/132125693


文末福利




1
.如需汽车电子嵌入式收集的学习文档,
后台回复“

资料

即可免费下载;

2.为便于技术交流,创建了汽车电子嵌入式技术交流群,可尽情探讨AP,CP,DDS,SOME/IP等前沿热点话题,后台回复“加群”即可加入;



注:本文引用了一些第三方工具和文档,若有侵权,请联系作者删除!


推荐阅读

汽车电子嵌入式精彩文章汇总第一期:20210530-20230703

汽车电子嵌入式精彩文章汇总第2期

End



欢迎点赞,关注,转发,在看,您的每一次鼓励,都是我最大的动力!

汽车电子嵌入式

微信扫描二维码,关注我的公众号

评论 (0)
  • 六西格玛首先是作为一个量度质量水平的指标,它代表了近乎完美的质量的水平。如果你每天都吃一个苹果,有一间水果店的老板跟你说,他们所卖的苹果,质量达到六西格玛水平,换言之,他们每卖一百万个苹果,只会有3.4个是坏的。你算了一下,发现你如果要从这个店里买到一个坏苹果,需要805年。你会还会选择其他店吗?首先发明六西格玛这个词的人——比尔·史密斯(Bill Smith)他是摩托罗拉(Motorloa)的工程师,在追求这个近乎完美的质量水平的时候,发明了一套方法模型,开始时是MAIC,后来慢慢演变成DMA
    优思学院 2025-03-27 11:47 160浏览
  • 在智能终端设备开发中,语音芯片与功放电路的配合直接影响音质表现。广州唯创电子的WTN6、WT588F等系列芯片虽功能强大,但若硬件设计不当,可能导致输出声音模糊、杂音明显。本文将以WTN6与WT588F系列为例,解析音质劣化的常见原因及解决方法,帮助开发者实现清晰纯净的语音输出。一、声音不清晰的典型表现与核心原因当语音芯片输出的音频信号存在以下问题时,需针对性排查:背景杂音:持续的“沙沙”声或高频啸叫,通常由信号干扰或滤波不足导致。语音失真:声音断断续续或含混不清,可能与信号幅度不匹配或功放参数
    广州唯创电子 2025-03-25 09:32 112浏览
  • WT588F02B是广州唯创电子推出的一款高性能语音芯片,广泛应用于智能家电、安防设备、玩具等领域。然而,在实际开发中,用户可能会遇到烧录失败的问题,导致项目进度受阻。本文将从下载连线、文件容量、线路长度三大核心因素出发,深入分析烧录失败的原因并提供系统化的解决方案。一、检查下载器与芯片的物理连接问题表现烧录时提示"连接超时"或"设备未响应",或烧录进度条卡顿后报错。原因解析接口错位:WT588F02B采用SPI/UART双模通信,若下载器引脚定义与芯片引脚未严格对应(如TXD/RXD交叉错误)
    广州唯创电子 2025-03-26 09:05 149浏览
  • 在智慧城市领域中,当一个智慧路灯项目因信号盲区而被迫增设数百个网关时,当一个传感器网络因入网设备数量爆增而导致系统通信失效时,当一个智慧交通系统因基站故障而导致交通瘫痪时,星型网络拓扑与蜂窝网络拓扑在构建广覆盖与高节点数物联网网络时的局限性便愈发凸显,行业内亟需一种更高效、可靠与稳定的组网技术以满足构建智慧城市海量IoT网络节点的需求。星型网络的无线信号覆盖范围高度依赖网关的部署密度,同时单一网关的承载设备数量有限,难以支撑海量IoT网络节点的城市物联系统;而蜂窝网络的无线信号覆盖范围同样高度依
    华普微HOPERF 2025-03-24 17:00 239浏览
  • 家电,在人们的日常生活中扮演着不可或缺的角色,也是提升人们幸福感的重要组成部分,那你了解家电的发展史吗?#70年代结婚流行“四大件”:手表、自行车、缝纫机,收音机,合成“三转一响”。#80年代随着改革开放的深化,中国经济开始飞速发展,黑白电视机、冰箱、洗衣机这“新三件”,成为了人们对生活的新诉求。#90年代彩电、冰箱、全自动洗衣机开始大量进入普通家庭,快速全面普及,90年代末,家电产品实现了从奢侈品到必需品的转变。#00年代至今00年代,随着人们追求高品质生活的愿望,常用的电视机、洗衣机等已经远
    启英AI平台 2025-03-25 14:12 90浏览
  • 在智能语音产品的开发过程中,麦克风阵列的选型直接决定了用户体验的优劣。广州唯创电子提供的单麦克风与双麦克风解决方案,为不同场景下的语音交互需求提供了灵活选择。本文将深入解析两种方案的性能差异、适用场景及工程实现要点,为开发者提供系统化的设计决策依据。一、基础参数对比分析维度单麦克风方案双麦克风方案BOM成本¥1.2-2.5元¥4.8-6.5元信噪比(1m)58-62dB65-68dB拾音角度全向360°波束成形±30°功耗8mW@3.3V15mW@3.3V典型响应延迟120ms80ms二、技术原
    广州唯创电子 2025-03-27 09:23 171浏览
  • ​2025年3月27日​,贞光科技授权代理品牌紫光同芯正式发布新一代汽车安全芯片T97-415E。作为T97-315E的迭代升级产品,该芯片以大容量存储、全球化合规认证、双SPI接口协同为核心突破,直击智能网联汽车"多场景安全并行"与"出口合规"两大行业痛点,助力车企抢占智能驾驶与全球化市场双赛道。行业趋势锚定:三大升级回应智能化浪潮1. 大容量存储:破解车联网多任务瓶颈随着​车机功能泛在化​(数字钥匙、OTA、T-BOX等安全服务集成),传统安全芯片面临存储资源挤占难题。T97-415E创新性
    贞光科技 2025-03-27 13:50 156浏览
  • 在嵌入式语音系统的开发过程中,广州唯创电子推出的WT588系列语音芯片凭借其优异的音质表现和灵活的编程特性,广泛应用于智能终端、工业控制、消费电子等领域。作为该系列芯片的关键状态指示信号,BUSY引脚的设计处理直接影响着系统交互的可靠性和功能拓展性。本文将从电路原理、应用场景、设计策略三个维度,深入解析BUSY引脚的技术特性及其工程实践要点。一、BUSY引脚工作原理与信号特性1.1 电气参数电平标准:输出3.3V TTL电平(与VDD同源)驱动能力:典型值±8mA(可直接驱动LED)响应延迟:语
    广州唯创电子 2025-03-26 09:26 211浏览
  • 在电子设计中,电磁兼容性(EMC)是确保设备既能抵御外部电磁干扰(EMI),又不会对自身或周围环境产生过量电磁辐射的关键。电容器、电感和磁珠作为三大核心元件,通过不同的机制协同作用,有效抑制电磁干扰。以下是其原理和应用场景的详细解析:1. 电容器:高频噪声的“吸尘器”作用原理:电容器通过“通高频、阻低频”的特性,为高频噪声提供低阻抗路径到地,形成滤波效果。例如,在电源和地之间并联电容,可吸收电源中的高频纹波和瞬态干扰。关键应用场景:电源去耦:在IC电源引脚附近放置0.1μF陶瓷电容,滤除数字电路
    时源芯微 2025-03-27 11:19 171浏览
  •       知识产权保护对工程师的双向影响      正向的激励,保护了工程师的创新成果与权益,给企业带来了知识产权方面的收益,企业的创新和发明大都是工程师的劳动成果,他们的职务发明应当受到奖励和保护,是企业发展的重要源泉。专利同时也成了工程师职称评定的指标之一,专利体现了工程师的创新能力,在求职、竞聘技术岗位或参与重大项目时,专利证书能显著增强个人竞争力。专利将工程师的创意转化为受法律保护的“无形资产”,避免技术成果被他人抄袭或无偿使
    广州铁金刚 2025-03-25 11:48 181浏览
  • 长期以来,智能家居对于大众家庭而言就像空中楼阁一般,华而不实,更有甚者,还将智能家居认定为资本家的营销游戏。商家们举着“智慧家居、智慧办公”的口号,将原本价格亲民、能用几十年的家电器具包装成为了高档商品,而消费者们最终得到的却是家居设备之间缺乏互操作性、不同品牌生态之间互不兼容的碎片化体验。这种早期的生态割裂现象致使消费者们对智能家居兴趣缺失,也造就了“智能家居无用论”的刻板印象。然而,自Matter协议发布之后,“命运的齿轮”开始转动,智能家居中的生态割裂现象与品牌生态之间的隔阂正被基于IP架
    华普微HOPERF 2025-03-27 09:46 123浏览
  • 汽车导航系统市场及应用环境参照调研机构GII的研究报告中的市场预测,全球汽车导航系统市场预计将于 2030年达到472亿美元的市场规模,而2024年至2030年的年复合成长率则为可观的6.7%。汽车导航系统无疑已成为智能汽车不可或缺的重要功能之一。随着人们在日常生活中对汽车导航功能的日渐依赖,一旦出现定位不准确或地图错误等问题,就可能导致车主开错路线,平白浪费更多行车时间,不仅造成行车不便,甚或可能引发交通事故的发生。有鉴于此,如果想要提供消费者完善的使用者体验,在车辆开发阶段便针对汽车导航功能
    百佳泰测试实验室 2025-03-27 14:51 204浏览
  • 文/陈昊编辑/cc孙聪颖‍2025 年,作为中国实施制造强国战略第一个十年计划的关键里程碑,被赋予了极为重大的意义。两会政府工作报告清晰且坚定地指出,要全力加速新质生产力的发展进程,推动传统产业全方位向高端化、智能化与绿色化转型。基于此,有代表敏锐提议,中国制造应从前沿技术的应用切入,逐步拓展至产业生态的构建,最终延伸到提升用户体验的维度,打出独树一帜、具有鲜明特色的发展牌。正是在这样至关重要的时代背景之下,于 AWE 2025(中国家电及消费电子博览会)这一备受瞩目的舞台上,高端厨房的中国方案
    华尔街科技眼 2025-03-25 16:10 87浏览
  • 在当今竞争激烈的工业环境中,效率和响应速度已成为企业制胜的关键。为了满足这一需求,我们隆重推出宏集Panorama COOX,这是Panorama Suite中首款集成的制造执行系统(MES)产品。这一创新产品将Panorama平台升级为全面的工业4.0解决方案,融合了工业SCADA和MES技术的双重优势,帮助企业实现生产效率和运营能力的全面提升。深度融合SCADA与MES,开启工业新纪元宏集Panorama COOX的诞生,源于我们对创新和卓越运营的不懈追求。通过战略性收购法国知名MES领域专
    宏集科技 2025-03-27 13:22 207浏览
  • 案例概况在丹麦哥本哈根,西门子工程师们成功完成了一项高安全设施的数据集成项目。他们利用宏集Cogent DataHub软件,将高安全设施内的设备和仪器与远程监控位置连接起来,让技术人员能够在不违反安全规定、不引入未经授权人员的情况下,远程操作所需设备。突破OPC 服务器的远程连接难题该项目最初看似是一个常规的 OPC 应用:目标是将高安全性设施中的冷水机(chiller)设备及其 OPC DA 服务器,与远程监控站的两套 SCADA 系统(作为 OPC DA 客户端)连接起来。然而,在实际实施过
    宏集科技 2025-03-27 13:20 117浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦